Database: OMIM
Entry: 141800
LinkDB: 141800
MIM Entry: 141800
  The alpha and beta loci determine the structure of the 2 types of
  polypeptide chains in the tetrameric adult hemoglobin, Hb A,
  alpha-2/beta-2. The alpha locus also determines a polypeptide chain, the
  alpha chain, in fetal hemoglobin (alpha-2/gamma-2), in hemoglobin
  A2(alpha-2/delta-2), and in embryonic hemoglobin (alpha-2/epsilon-2).
  The number of normal alpha genes (3, 2, 1 or none) in Asian cases of
  alpha-thalassemia results in 4 different alpha-thalassemia syndromes
  (Kan et al., 1976). Three normal alpha genes gives a silent carrier
  state. Two normal alpha genes results in microcytosis (so-called
  heterozygous alpha-thalassemia). One normal alpha gene results in
  microcytosis and hemolysis (so-called Hb H disease). No normal alpha
  gene results in 'homozygous alpha-thalassemia' manifested as fatal
  hydrops fetalis.
  By studies of somatic cell hybrids, Deisseroth et al. (1976) showed that
  the alpha and beta loci are on different chromosomes. Gandini et al.
  (1977) concluded, incorrectly as it turned out, that the alpha loci are
  on the long arm of chromosome 4 (4q28-q34). The conclusion was based on
  a finding of excessive synthesis of alpha chains in patients with
  duplication of this region. Deisseroth et al. (1977) combined the
  methods of somatic cell hybridization and DNA-cDNA hybridization to
  establish assignment of the alpha-globin locus to chromosome 16. This
  represents an extension of the cell hybridization method permitting
  mapping of genes that are not functional in the cultured cell. Weitkamp
  et al. (1977) presented data concerning linkage of the alpha and beta
  loci to 34 marker loci. Data on alpha-thalassemia, combined with those
  on the Hopkins-2 variant, excluded linkage of alpha and haptoglobin at a
  recombination fraction less than 0.15. Deisseroth and Hendrick (1978)
  confirmed the assignment of the alpha locus to chromosome 16 by means of
  cotransfer of this gene with the human APRT gene, known to be on 16 (see
  102600), into mouse erythroleukemia cells. (The APRT gene is on the long
  arm of chromosome 16.) On the basis of findings in a case of partial
  trisomy 16, Wainscoat et al. (1981) concluded that the alpha-globin
  genes are on segment 16pter-p12. By combining somatic cell hybridization
  with a cDNA probe in the study of a cell line with reciprocal
  translocation between 16q and 11q, Koeffler et al. (1981) showed that
  the alpha-globin genes are on the short arm of 16. Gerhard et al. (1981)
  used an improved method of in situ hybridization to confirm the
  assignment of the alpha-globin cluster to chromosome 16p. The evidence
  on the precise location of HBAC is conflicting, with assignments from
  16p13.33 to 16p13.11 (Reeders, 1986). The fact that adult polycystic
  kidney disease (APKD; 173900) is proximal to HBAC and is on the 5-prime
  side of HBAC appears to indicate that the order is 16cen--APKD--5-prime
  HBZ1--HBA1--3-prime HVR--pter. (3-prime HVR is the hypervariable region
  used in mapping APKD to 16p.) On the basis of the findings in a fetus
  with an unbalanced translocation involving 16p, Breuning et al. (1987)
  concluded that the HBA cluster is distal to PGP. By a combination of in
  situ hybridization, Southern blot analysis, and linkage analysis using
  the fragile site 16p12.3 and translocation breakpoints within band
  16p13.1, Simmers et al. (1987) mapped the alpha-globin gene complex to
  16pter-p13.2. Buckle et al. (1988) described a child in whom cytogenetic
  analysis indicated monosomy for 16pter-p13.3. DNA studies showed that
  the patient had not inherited either maternal alpha-globin allele. The
  child had the alpha-thalassemia trait as well as moderate mental
  retardation and dysmorphic features. They determined that the gene is
  located in the 16pter-p13.3 segment. After reviewing earlier data
  placing the alpha-globin cluster slightly more proximal, they concluded
  that the findings in this child may be more reliable.
  Orkin (1978) identified alpha-globin gene fragments in restriction
  endonuclease digests of total DNA after electrophoresis by hybridization
  with P32-labeled cDNA probes. The data indicated that the alpha genes
  occur in duplicate and that the 2 copies lie close together. Thus direct
  physical evidence is provided for the duplication deduced from the
  findings with mutant alpha chains and with the alpha-thalassemias and
  the kinetics of hybridization in solution. The 2 alpha chains lie about
  3.7 kilobases apart. Leder et al. (1978) presented evidence that the
  alpha and beta genes of all adult mammalian hemoglobins have 2
  intervening sequences at analogous positions. Wilson et al. (1977)
  described a possible nucleotide polymorphism in the untranslated 3-prime
  region of the alpha-globin gene and suggested that the heterogeneity is
  related to the existence of 2 alpha gene loci. Musumeci et al. (1978)
  pointed out that the combination of alpha-thalassemia and
  beta-thalassemia leads to less severe clinical expression of homozygous
  beta-thalassemia. The rarity of a chromosome 16 with both alpha loci
  deleted (as demonstrated by the restriction endonuclease mapping
  technique of Southern) explains the rarity of severe forms of
  alpha-thalassemia in Africans, e.g., Hb H disease which requires loss of
  3 alpha loci and homozygous alpha-thalassemia which requires loss of 4
  alpha loci (Dozy et al., 1979). By restriction endonuclease mapping,
  Goossens et al. (1980) identified 12 persons heterozygous for a
  chromosome carrying 3 alpha genes. There were no hematologic
  abnormalities. The frequency was 0.0036 in American Blacks and 0.05 in
  Greek Cypriots. They had previously shown a frequency of 0.16 for the
  single alpha-globin locus in black Americans. The single locus had a
  frequency of 0.18 in Sardinians, but none of 125 Sardinians had a triple
  alpha locus, suggesting that the former had a selective advantage. Greek
  Cypriots have a frequency of 0.07 for the single alpha locus. Among 645
  Japanese subjects studied, Nakashima et al. (1990) found 10 persons
  heterozygous for a chromosome with the triplicated alpha-globin locus.
  Thus, the frequency of the triplicate alpha locus was 0.008 in this
  population, while that of the single alpha-locus, i.e., the
  alpha-thalassemia-2 gene, may be lower than 0.0008. Analysis of
  haplotypes suggested that the triple alpha loci may have had multiple
  origins. Nakashima et al. (1990) commented on the fact that in Melanesia
  the frequency of the triplicated genotype is about the same (Flint et
  al., 1986) as in Japan, whereas the frequency of the single alpha gene
  is much higher, compatible with a selective advantage vis-a-vis malaria.
  Liebhaber et al. (1981) found identity of the alpha-1-globin genes from
  an Asian and a Caucasian. Furthermore, the alpha-1 and alpha-2 genes
  have a much higher degree of homology than would be predicted from the
  timing of the duplication before the bird-mammal divergence (about 300
  Myr ago). Liebhaber et al. (1981) presented this as evidence for the
  existence of mechanisms for suppression of allelic polymorphisms and for
  exchange of genetic information within the alpha-globin gene complex.
  See 142200 for a discussion of gene conversion in relation to a
  comparably surprising homology of the 2 gamma-globin genes.
  Lehmann and Carrell (1984) suggested the use of the following
  nomenclature for alpha-thalassemias based on the number of alpha-globin
  genes that are missing or abnormal: 1-alpha-thalassemia (silent type);
  2-alpha-thalassemia, trans or cis (thalassemia trait);
  3-alpha-thalassemia (Hb H disease); and 4-alpha-thalassemia (Hb Bart's
  hydrops fetalis). In this scheme, homozygous Hb Constant Spring is a
  2-alpha-thalassemia which, if combined with a cis 2-alpha-thalassemia
  heterozygous Hb Constant Spring, gives a 3-alpha-thalassemia and results
  in Hb H disease. Lehmann and Carrell (1984) also proposed that the 2
  alpha-globin genes be designated as 5-prime (now alpha-2) and 3-prime
  (now alpha-1). Liebhaber and Cash (1985) described a method for
  identifying whether the alpha-1 or alpha-2 locus is the site of
  particular alpha-globin mutations. Rubin and Kan (1985) described a
  sensitive method for determining how many alpha-globin genes are
  present. It had the advantages of not requiring restriction enzyme
  digestion and gel electrophoresis and using the much more stable isotope
  (35)S rather than 32(P) for labeling. Only a small sample of DNA is
  needed. Application of the approach to diagnosis of Down syndrome was
  proposed. Assum et al. (1985) added a fourth restriction site
  polymorphism in the alpha-globin gene cluster. Compared to the
  beta-globin cluster, the alpha-globin cluster seemed to show a poverty
  of DNA polymorphism; however, Higgs et al. (1986) demonstrated a
  remarkable degree of DNA polymorphism in the alpha-globin gene cluster.
  In addition, the RFLP haplotype is associated with hypervariable regions
  of DNA.
  Pseudo-alpha-1 (HBAP1), a pseudogene, is defective in several respects,
  including splice junction mutations and premature termination codons.
  Hardison et al. (1986) identified a previously undetected pseudogene in
  the alpha-globin cluster. It was not detected by hybridization studies
  but was found only on sequence analysis. Hardison et al. (1986)
  suggested that 'divergent copies of a large number of genes may comprise
  a substantial fraction of the slowly renaturing DNA of mammalian
  genomes.' The newly detected pseudogene, which will be symbolized HBAP2,
  is only 65 bp 3-prime to the polyadenylation site of zeta-1 (HBZP). The
  sequence is: 5-prime--HBZ--HBZP--HBAP2--HBA2--HBA1--3-prime. (The
  functional Hba gene of the mouse is on chromosome 11, but pseudogenes
  are dispersed to other chromosomes (e.g., Hba-ps3 to mouse chromosome
  15) (Popp et al., 1981; Leder et al., 1981; Eicher and Lee, 1991).)
  Vandenplas et al. (1987) described a new form of alpha-0 thalassemia in
  a South African family ascertained through a case of Hb H disease. A
  novel deletion of 22.8-22.7 kb of DNA removed 3 pseudogenes as well as
  the alpha-2 and alpha-1 genes. Since the alpha-2-globin gene encodes the
  majority of alpha-globin, a thalassemic mutation of the alpha-1-globin
  gene would be expected to result in a less severe loss of alpha-chain
  synthesis. Moi et al. (1987) described an initiation codon mutation,
  AUG-to-GUG, in the alpha-1-globin gene. As predicted, the degree of
  interference with alpha-globin synthesis was less in this mutation than
  in the mutation in the initiation codon of the alpha-2-globin gene (see
  141850). Hill et al. (1987) described a unique nondeletion form of Hb H
  disease in Papua New Guinea: all 4 alpha genes were intact. Hill et al.
  (1987) commented on the striking difference in the hemoglobinopathies
  that occur in Southeast Asia and in Melanesia. In the former area, Hb E,
  Hb Constant Spring, and the Southeast Asian form of deletion
  alpha-0-thalassemia are all common, whereas these forms have never been
  found in Melanesians or Polynesians. Jarman and Higgs (1988) identified
  a highly polymorphic region approximately 100 kb upstream of the
  alpha-globin genes and referred to it as 5-prime HVR. This is a valuable
  genetic marker for 16p. Higgs et al. (1989) gave a comprehensive review
  of the molecular genetics of the alpha-globin gene cluster, including
  its diseases.
  Hatton et al. (1990) presented evidence for the existence of an
  alpha-locus control region (LCRA; 152422). This would be comparable to
  the beta-LCR which controls expression of the beta-like genes; see
  152424. Liebhaber et al. (1990) identified an individual with
  alpha-thalassemia in whom structurally normal alpha-globin genes were
  inactivated in cis by a discrete de novo 35-kb deletion located about 30
  kb 5-prime to the alpha-globin gene cluster. They concluded that the
  deletion inactivates expression of the alpha-globin genes by removing
  one or more of the previously identified upstream regulatory sequences
  that are critical to expression of the alpha-globin genes.
  Hemoglobinopathies of alpha-globin can result from missense mutations at
  either of the 2 alpha-globin loci, HBA1 or HBA2. Since the normal HBA1
  and HBA2 genes encode an identical alpha globin, these mutants cannot be
  assigned to their specific loci on the basis of protein structural
  analysis. A clue to the encoding locus, HBA1 versus HBA2, is provided by
  the relative concentration of the alpha-globin mutant in the erythrocyte
  based on the 2- to 3-fold higher level of expression of the HBA2 gene
  (Liebhaber et al., 1986). However, since variables such as protein
  stability, efficiency of hemoglobin tetramer formation, and other
  factors can affect the steady-state levels of globin mutants, a
  definitive locus assignment must be directly determined. Cash et al.
  (1989) quantitated the expression of 2 alpha-globin structural mutants
  found in the Caribbean basin, Fort de France and Spanish Town, and
  showed that they are HBA1 and HBA2 mutants, respectively, on the basis
  of low or high expression.
  Wilkie et al. (1991) described major polymorphic length variation in the
  terminal region of 16p (16p13.3) by physically linking the alpha-globin
  locus with probes to telomere-associated repeats. They found 3 alleles
  in which the alpha-globin genes lie 170 kb, 350 kb, or 430 kb from the
  telomere. The 2 most common alleles were found to contain different
  terminal segments, starting 145 kb distal to the alpha-globin genes.
  Beyond this boundary these alleles are nonhomologous, yet each contains
  sequences related to other, different chromosome termini. This
  chromosome-size polymorphism probably arose by occasional exchanges
  between the subtelomeric regions of nonhomologous chromosomes. Wilkie et
  al. (1991) raised the possibility that the high frequency of trisomy 16
  may be related to this nonhomology of the 2 common 16pter alleles in
  their subtelomeric region.
  Huisman et al. (1996) found that of the 141 codons of the alpha-globin
  genes (there are no sequence differences between the coding regions of
  the alpha-2 and alpha-1 genes), as many as 99 have been found to be
  mutated; for several, 3 or 4 mutations have been discovered, while 5
  mutations are known for codons 23, 75, and 94, and 6 for codon 141. The
  mutations appear to occur at random; thus, either one of the 3 bases are
  replaced in the 199 known alpha-globin gene mutants.
  The suggestion that alpha(+)-thalassemia has achieved a high frequency
  in some populations as a result of selection by malaria is based on a
  number of epidemiologic studies. In the southwest Pacific region, there
  is a striking geographic correlation between the frequency of
  alpha(+)-thalassemia and the endemicity of Plasmodium falciparum. Allen
  et al. (1997) undertook a prospective case-control study of children
  with severe malaria on the north coast of Papua New Guinea, where
  malaria transmission is intense and alpha(+)-thalassemia affects more
  than 90% of the population (homozygotes comprise approximately 55% and
  heterozygotes 37% of the population). Compared with normal children, the
  risk of having severe malaria was 0.40 in alpha(+)-thalassemia
  homozygotes and 0.66 in heterozygotes. Unexpectedly, the risk of
  hospital admission with infections other than malaria also was reduced
  to a similar degree in homozygotes (0.36) and heterozygotes (0.63). This
  clinical study demonstrated that a malaria resistance gene protects
  against disease caused by infections other than malaria. A reduction in
  mortality greater than that attributable directly to malaria had been
  observed after the prevention of malaria by insecticides,
  chemoprophylaxis, and insecticide-impregnated bed nets. Previous
  observations that direct malaria mortality cannot account for observed
  hemoglobin S gene frequencies suggest that the findings of this study
  may apply equally to other malaria resistance genes.
  Fung et al. (1999) reported 3 cases of homozygous alpha-thalassemia who
  survived beyond the newborn period, all with hypospadias. Review of the
  literature identified 2 additional cases. Fung et al. (1999) suggested
  that the hypospadias may have been secondary to the in utero edema
  leading to failure of fusion of urogenital folds or due to defect or
  deletion of another gene at 16p13.3.
  For a review of hydrops fetalis caused by alpha-thalassemia, see Chui
  and Waye (1998).
  From work on the mouse model of alpha-thalassemia, Leder et al. (1999)
  demonstrated that a normal beta-globin allele can act as a modifying
  gene ameliorating the severity of alpha-thalassemia. They found that the
  phenotype of alpha-thalassemia was strongly influenced by the genetic
  background in which the mutation resided; when both mutant genes were on
  a chromosome derived from strain 129, the phenotype was severe, whereas
  it was mild when the gene was on a 129 chromosome and a C57BL/6
  chromosome. Linkage mapping indicated that the modifying gene is very
  tightly linked to the beta-globin locus (lod score = 13.3). Furthermore,
  the severity of the phenotype correlated with the size of
  beta-globin-containing inclusion bodies, which accumulate in red blood
  cells and likely accelerate their destruction. The beta-major globin
  chains encoded by the 2 strains differed by 3 amino acids, one of which
  is a glycine-to-cysteine substitution at position 13. The cys13 should
  be available for interchain disulfide bridging and consequent
  aggregation between excess beta chains. This normal polymorphic
  variation between murine beta-globin chains could account for the
  modifying action of the unlinked beta-globin locus. Here, the variation
  in severity of the phenotype would not depend on a change in the ratio
  between alpha and beta chains but on the chemical nature of the normal
  beta chain, which is in excess. This work also indicated that modifying
  genes can be normal variants that, absent an apparent physiologic
  rationale, may be difficult to identify on the basis of structure alone.
  De Gobbi et al. (2006) identified a pathogenetic mechanism underlying a
  variant form of the inherited blood disorder alpha-thalassemia.
  Association studies of affected individuals from Melanesia localized the
  disease trait to the telomeric region of human chromosome 16, which
  includes the alpha-globin gene cluster, but no molecular defects were
  detected by conventional approaches. After resequencing and using a
  combination of chromatin immunoprecipitation and expression analysis on
  a tiled oligonucleotide array, De Gobbi et al. (2006) identified a
  gain-of-function regulatory single-nucleotide polymorphism (rSNP)
  (141800.0218) in a nongenic region between the alpha-globin genes and
  their upstream regulatory elements. The rSNP creates a new promoter-like
  element that interferes with normal activation of all downstream
  alpha-like globin genes. De Gobbi et al. (2006) concluded that their
  work illustrates a strategy for distinguishing between neutral and
  functionally important rSNPs, and it also identifies a pathogenetic
  mechanism that could potentially underlie other genetic diseases.
  Schoenfelder et al. (2010) found that mouse Hbb and Hba associated with
  hundreds of active genes from nearly all chromosomes in nuclear foci
  that they called 'transcription factories.' The 2 globin genes
  preferentially associated with a specific and partially overlapping
  subset of active genes. Schoenfelder et al. (2010) also noted that
  expression of the Hbb locus is dependent upon Klf1 (600599), while
  expression of the Hba locus is only partially dependent on Klf1.
  Immunofluorescence analysis of mouse erythroid cells showed that most
  Klf1 localized to the cytoplasm and that nuclear Klf1 was present in
  discrete sites that overlapped with RNAII foci. Klf1 knockout in mouse
  erythroid cells specifically disrupted the association of Klf1-regulated
  genes within the Hbb-associated network. Klf1 knockout more weakly
  disrupted interactions within the specific Hba network. Schoenfelder et
  al. (2010) concluded that transcriptional regulation involves a complex
  3-dimensional network rather than factors acting on single genes in
  N.B.: Alpha-globin variants for which it is unknown whether HBA1 or HBA2
  is involved have arbitrarily been included in this entry. Carver and
  Kutlar (1995) listed 191 alpha-globin variants as of January 1995. The
  syllabus by Huisman et al. (1996) listed 199 alpha-chain hemoglobin
  variants as of January 1996. These included single-base mutations in the
  alpha-2 and alpha-1 genes as well as 2-base mutations. Not included in
  their syllabus were deletions in mutations that result in
  alpha-thalassemia, even if such a change (point mutation or frameshift)
  occurred in one of the coding regions of the gene. Information about the
  alpha-thalassemias was provided by Higgs et al. (1989).
Allelic Variants:
  See Harano et al. (1984) and Baudin et al. (1987).
  This was found in a clinically normal black female in Albany, Georgia
  (Webber et al., 1983). See also Shimasaki et al. (1983).
  See Pootrakul et al. (1975).
  See Adams et al. (1972) and Adams (1974).
  See Rahbar et al. (1975).
  See Fujiwara (1970) and Fujiwara et al. (1971).
  See McDonald et al. (1990).
  See Shelton et al. (1985).
  See Marinucci et al. (1980).
  See Liang et al. (1982).
  See Kleihauer et al. (1968). (This is actually an allelic variant of the
  HBA2 gene; see 141850.0030.)
  See Dahmane-Arbane et al. (1987).
  See de Traverse et al. (1966), Yanase et al. (1968), Vella et al.
  (1970), and Fleming et al. (1978).
  See Virshup et al. (1988). Moo-Penn et al. (1989) identified insertion
  of a glutamic acid residue between proline-37 and threonine-38 in an
  unstable hemoglobin variant. The PCR-amplified fragment of the variant
  gene showed insertion of a GAA codon. In the normal alpha-globin gene
  cluster, GAG is the codon for glutamic acid. Moo-Penn et al. (1989)
  suggested that this mutation may have resulted from nonhomologous
  nonallelic gene conversion.
  See Boyer et al. (1968).
  See Orringer et al. (1976).
  See Clegg et al. (1966) and Harano et al. (1983). Polycythemia is the
  only clinical feature. This was the first polycythemia-producing variant
  to be described (Charache et al., 1966).
  See Jones et al. (1968).
  See Bowman et al. (1986).
  See Zeng et al. (1984).
  Unstable hemoglobin due to disruption of hydrogen bond between alpha 103
  (his) and beta 108 (asn) (Sciarratta et al., 1984).
  See Nakatsuji et al. (1984).
  See Spivak et al. (1981) and Lacombe et al. (1987).
  See Dysert et al. (1982).
  See Rahbar et al. (1973) and de Weinstein et al. (1985).
  See Wiltshire et al. (1972).
  See Liang et al. (1981, 1988).
  See Jue et al. (1979) and Baklouti et al. (1988).
  See Crookston et al. (1969) and Headlee et al. (1983).
  Honig et al. (1982) first described Hb Evanston in 2 black families. See
  also Moo-Penn et al. (1983).
  Harteveld et al. (2004) found this rare variant alone and in the
  presence of common alpha-thalassemia deletions in 3 independent Asian
  See Lee-Potter et al. (1981).
  Wajcman et al. (1989) found this substitution in an Italian family. The
  substitution produced no change in the stability or oxygen binding
  properties of the hemoglobin molecule. The electrophoretic properties
  were, furthermore, identical to those of Hb A, with the exception of
  isoelectric focusing in which the variant migrated like Hb A1c. Hb
  J(Nyanza), another substitution at position alpha-21, likewise causes no
  hematologic disorder.
  See Braconnier et al. (1977). Cash et al. (1989) confirmed that this is
  a mutant of the HBA1 gene.
  See Marengo-Rowe et al. (1968).
  This variant was described in 2 black families. Unusually low (5%)
  concentration was found in heterozygotes, perhaps because of decreased
  ability of the abnormal alpha chain to form dimers with beta chains. See
  Schneider et al. (1971) and Carstairs et al. (1985).
  See Huisman et al. (1970).
  MOVED TO 141850.0054
  See Cohen-Solal et al. (1975) and Lorkin et al. (1975).
  Hb G (Pest) and Hb J (Buda) (141850.0008), both alpha-chain mutants,
  occurred together in a Hungarian male with erythrocytosis. The
  occurrence of some normal Hb A in this man showed the existence of at
  least 2 alpha loci. See Brimhall et al. (1970, 1974) and Hollan et al.
  (1972). Using polymerase chain reaction (PCR) to amplify selectively
  alpha-1 and alpha-2-globin cDNAs, Mamalaki et al. (1990) then hybridized
  the cDNAs to synthetic oligonucleotides specific for either the normal
  or the mutated sequence. Using this approach, the alpha-globin
  structural mutants J-Buda and G-Pest were found to be encoded by the
  alpha-2 and the alpha-1-globin genes, respectively. The substitution in
  G-Pest was a change from GAC to AAC at codon 74.
  See Vella et al. (1958), Gammack et al. (1961), Lie-Injo et al. (1966,
  1979); Blackwell and Liu (1970), Pootrakul and Dixon (1970), Lorkin et
  al. (1970), Iuchi et al. (1978), and Higgs et al. (1980). Zeng et al.
  (1992) demonstrated that the mutation is due to a GAC-to-CAC change in
  codon 74 of the HBA1 gene. They developed a simple and accurate method
  for diagnosis of the Hb Q (Thailand) variant based on restriction enzyme
  See Blackwell et al. (1973) and Bunn et al. (1978). Schiliro et al.
  (1991) found this variant in a Filipino mother and child living in
  Sicily. They showed no hematologic abnormalities.
  See Winter et al. (1978).
  HBA1, 3AA INS, 118THR-GLU-PHE119
  At the time it was first studied by Huisman et al. (1974), hemoglobin
  Grady was unique in having an insertion of threonine-glutamic
  acid-phenylalanine between amino acids 118 and 119 of the alpha chain.
  Several hemoglobins with deletions were then known (Leiden, Lyon,
  Freiburg, Niteroi, Tochigi, St. Antoine, Tours and Gun Hill). Scott et
  al. (1981) found no evidence of an extra (fifth) alpha gene. They
  argued, therefore, that if, as supposed, Hb Grady arose by unequal
  crossing over, the event occurred between alleles rather than between
  the separate alpha-1 and alpha-2 loci. The glu-phe-thr insertion is a
  repeat of normal residues 116, 117 and 118. See Cleek et al. (1983).
  Substitution of glutamine for histidine at alpha 112 was thought to be
  the change in hemoglobin Dakar; however, on restudy the hemoglobin was
  found to be identical to Hb Grady (Garel et al., 1976).
  See Jen and Liu (1987), Zhou et al. (1987), and Li et al. (1990).
  See Hattori et al. (1985).
  See Harano et al. (1982) and Sugihara et al. (1983).
  See Griffiths et al. (1977), Chih-chuan et al. (1981), and Al-Awamy et
  al. (1985).
  See Zeng et al. (1984).
  See Harano et al. (1988). Using dot-blot analysis of amplified DNA with
  (32)p-labeled probes, Zhao et al. (1990) located the mutation in codon
  27 of the minor alpha-1 globin gene and showed that the change involved
  a GAG (glutamic acid)-to-GAT (aspartic acid) mutation. Their patients
  were 3 Chinese women from Macau.
  In Thailand, Ngiwsara et al. (2004) described 2 unrelated cases of
  compound heterozygosity for Hb Hekinan and alpha-thalassemia.
  See Ohba et al. (1975, 1978).
  See Fleming et al. (1987).
  Fast hemoglobin. See Smith and Torbert (1958), Itano and Robinson
  (1960), Bradley et al. (1961), Ostertag et al. (1972), Clegg and
  Charache (1978).
  Fast hemoglobin. Substitution of aspartic acid for lysine at alpha 16
  was first reported by Murayama (1962). However, Crick pointed out that
  this substitution could not be accomplished by change in one base.
  Restudy by Beale and Lehmann (1965) and by Schneider et al. (1966)
  showed substitution of glutamic acid for lysine. Hemoglobin I was
  thought to show sickling but this has been shown to be due to faulty
  technique (Schneider et al., 1967). See Rucknagel et al. (1955),
  Schwartz et al. (1957), Itano and Robinson (1959, 1960), Ranney et al.
  (1962), O'Brien et al. (1964), Thompson et al. (1965), Schneider et al.
  (1966), Bowman and Barnett (1967), Baur (1968), Labossiere and Vella
  (1971), Fleming et al. (1978), and Liebhaber et al. (1984). The
  hemoglobin I mutation is curious in that the mutation is present in HBA2
  (141850.0011) as well as in HBA1.
  See Shibata et al. (1980) and Liu et al. (1983).
  See Cabannes et al. (1972).
  See Giordano et al. (1990).
  See Kamuzora and Lehmann (1974) and Blackwell et al. (1974).
  See Martinez et al. (1978). Romero et al. (1995) found this hemoglobin
  variant in 3 Spanish families. The original description by Martinez et
  al. (1978) was in a Cuban family of Spanish ancestry.
  See Botha et al. (1966), Harano et al. (1983), and Lambridis et al.
  See Saenz et al. (1977) and Moo-Penn et al. (1981).
  See Colombo et al. (1974) and Ohba et al. (1983).
  See Rahbar et al. (1976).
  See Gottlieb et al. (1964).
  See Kendall et al. (1973).
  See Rosa et al. (1966), Trincao et al. (1968), and Marinucci et al.
  See Hyde et al. (1971).
  See Alberti et al. (1974) and Moo-Penn et al. (1978).
  See Wong et al. (1984).
  Since no simple frameshift mechanism could be imagined, the possibility
  of 2 separate mutations was favored by Blackwell et al. (1972), who
  suggested that 2 separate hemoglobins, appropriately called Hb J (Singa)
  and Hb J (Pore), will be discovered eventually. Double mutation on the
  same chromosome would seem more likely than crossing-over in a compound
  heterozygote since the 2 codons involved are contiguous.
  See Houjun et al. (1984). Li et al. (1990) found this variant in
  populations in the Silk Road region of China.
  See Gajdusek et al. (1967) and Beaven et al. (1972). A homozygous
  individual had only anomalous hemoglobin suggesting the existence of
  only one alpha locus in Melanesians (Abramson et al., 1970).
  See Crookston et al. (1965).
  See Moo-Penn et al. (1976).
  See Ahmad et al. (1986).
  See Harano et al. (1983) and Imai et al. (1989).
  See Harano et al. (1982).
  Not a genetic change. The C-terminal amino acid, 141, of the alpha chain
  (arginine) is missing, probably from the action of a carboxypeptidase
  present in normal plasma. This unusual fast hemoglobin is observed in
  persons with hemolysis. The change can occur in fetal hemoglobin also
  (Kohne et al., 1977). See Marti et al. (1967) and Schiliro et al.
  See Yamaoka et al. (1960), Ooya et al. (1961), Sumida (1975), and Ohba
  et al. (1982). The change is in TP IV (DeVries et al., 1963).
  See Rahbar et al. (1969).
  See Mavilio et al. (1978).
  See Sellaye et al. (1982), Harano et al. (1983), and Malcorra-Azpiazu et
  al. (1988).
  See Djoumessi et al. (1981) and Lu et al. (1984).
  This variant was discovered in a 10-year-old Algerian boy born in Loire.
  The child had erythrocytosis and microcytosis, the latter being due to
  iron deficiency (Baklouti et al., 1988).
  Groff et al. (1989) found this substitution in association with mild
  hemolytic anemia and increased indirect bilirubinemia in a family
  originating from the Netherlands.
  The aberrant hemoglobins associated with methemoglobinemia are referred
  to as hemoglobin M. Most of the hemoglobin M variants have substitutions
  of histidine at alpha 58, alpha 87, beta 63, or beta 92. These 4 amino
  acids are critical to the binding of the heme group. The exception is
  hemoglobin M (Milwaukee-1). See Gerald et al. (1957), Hansen et al.
  (1960), Gerald and Efron (1961), Betke (1962), Hayashi et al. (1964),
  Shimizu et al. (1965), Suzuki et al. (1965), Hollan et al. (1967), and
  Pulsinelli et al. (1973).
  Hb Iwate was the first variant hemoglobin found in Japan (Shibata et
  al., 1960). Familial cyanosis had been recognized for about 200 years in
  the prefecture of Iwate in Honshu, where about 70 affected persons were
  identified in the 1950s. It was called 'kuchikuro,' or 'blackmouth.' In
  each form of methemoglobinemia, the heme iron is stabilized in the
  ferric form. Patients with the Hb M alpha forms are cyanotic at birth;
  those with the Hb M beta forms are usually not cyanotic until they are 3
  months of age. Horst et al. (1987) showed that the Iwate mutation
  involves the alpha-1 globin gene. Specifically, they demonstrated a
  CAC-to-TAC mutation in codon 87 of that gene. They showed that the Iwate
  mutation can be identified directly on RsaI digestion. See Meyering et
  al. (1960), Shibata et al. (1961), Gerald and Efron (1961), Miyaji et
  al. (1962), Heller (1962), Heller et al. (1962), Tonz et al. (1962),
  Shibata (1964), Tamura (1964), Shimizu et al. (1965), Pik and Tonz
  (1966), Maggio et al. (1981), and Mayne et al. (1986).
  Ameri et al. (1999) likewise determined that the molecular defect in 2
  patients with Hb M (Kankakee) was his87 to tyr in the HBA1 gene. The
  proportion of Hb M (Kankakee) observed was higher than that predicted
  for an alpha-1-globin variant. They presented evidence suggesting that
  the greater-than-expected proportion of Hb M (Kankakee) results from
  preferential association of the electronegative beta-globin chains with
  the alpha-(M)-globin chains that are more electropositive than normal
  alpha-globin chains.
  MOVED TO 141850.0047
  See Ohba et al. (1977) and Yi-Tao et al. (1982).
  Substitution of glutamine for glutamic acid at alpha 23. A hemoglobin S
  homozygote who also carries this abnormal hemoglobin has a mild form of
  sickle cell anemia. See Kraus et al. (1965, 1967) and Cooper et al.
  Fast hemoglobin. See Jones et al. (1963, 1968), Beckman et al. (1966),
  Labie and Rosa (1966), Quattrin and Ventruto (1967), Fessas et al.
  (1969), and Trabuchet et al. (1982).
  See Honig et al. (1980).
  See Ohba et al. (1989).
  No hematologic abnormality. See Iuchi et al. (1980).
  See Knuth et al. (1979).
  This variant was detected by chromatography in the course of screening
  diabetics for Hb A1c (Wajcman et al., 1980).
  See Honig et al. (1978).
  See Shibata et al. (1981).
  Fast hemoglobin. See Ager et al. (1958), Baglioni (1962), Huntsman et
  al. (1963), Hanada et al. (1964), Imamura (1966), and Lehmann and
  Carrell (1969).
  See Wajcman et al. (1989).
  This hemoglobin showed an extremely high oxygen affinity. The patient,
  who had 'marginal erythrocytosis,' was shown to have 13.1% Hb Nunobiki
  (Shimasaki, 1985).
  See Lie-Injo and Sadono (1958), Baglioni and Lehmann (1962), and Sansone
  et al. (1970).
  Daud et al. (2001) investigated the occurrence of hemoglobin O
  (Indonesia) in related ethnic populations of the Indonesian archipelago.
  Nineteen individuals heterozygous for this variant were identified in 4
  ethnic populations. The level of Hb O (Indonesia) in 17 of the
  individuals was 11.6 +/- 1.0%, significantly lower than the expected 17
  to 22%, indicating the instability of Hb O (Indonesia).
  See Vettore et al. (1974), Kilinc et al. (1985), and Martin et al.
  (1990). Schnedl et al. (1997) showed that the silent hemoglobin O Padova
  mutation causes an additional peak on high performance liquid
  chromatography (HPLC) and falsely low HbA(1c) values (glycated
  hemoglobin) when measured by HPLC. HPLC is the gold standard for
  evaluation of glycated hemoglobin in diabetes mellitus.
  See Sugihara et al. (1982), Moo-Penn et al. (1982), and Yongsuwan et al.
  (1987). This has been shown to be a mutation of the HBA1 gene (Cash et
  al., 1989).
  See Schneider et al. (1980).
  See Vella et al. (1974) and Pootrakul et al. (1974).
  Yodsowan et al. (2000) studied this variant in a 21-year-old Thai female
  and her mother. Turbpaiboon et al. (2002) reported a fourth case of Hb
  Siam in a healthy Thai female and concluded that there is no
  alpha-thalassemic effect of the variant.
  This is a neutral-to-neutral change; it was detected in the course of
  mass screening by isoelectric focusing (Harano et al., 1986).
  See Rahbar et al. (1976).
  See Honig et al. (1981).
  See Thillet et al. (1977) and Gonzalez-Redondo et al. (1987).
  See Brennan et al. (1977).
  MOVED TO 141850.0055
  See Sukumaran et al. (1972) and Schmidt et al. (1976).
  See Lorkin et al. (1970), Lie-Injo et al. (1979), and Higgs et al.
  MOVED TO 141850.0052
  See Bardakdjian-Michau et al. (1989).
  See Huisman and Sydenstricker (1962) and Reynolds and Huisman (1966).
  This has been shown to be a mutation of the HBA1 gene (Cash et al.,
  Masala et al. (1987) first described this variant as an
  electrophoretically slow-moving hemoglobin in 2 brothers affected by
  erythrocytosis with slight microcytosis. In a large screening program
  involving 20,000 people in the city of Sassari and its surrounding area
  in Sardinia, Masala (1992) found the variant in 3 other apparently
  unrelated subjects. A male of German origin was identified by
  Bardakdjian-Michau et al. (1990) as a carrier of the same mutation.
  Sanna et al. (1994) demonstrated that the adult variant has increased
  oxygen affinity, a dramatic reduction of homotropic interactions, and a
  significant decrease of the effect of 2,3-diphosphoglycerate (35% lower
  than that observed for Hb A). The fetal variant also showed increased
  oxygen affinity compared with normal Hb F and an almost abolished
  heme-heme interaction.
  Paglietti et al. (1998) demonstrated that Hb Sassari results from a GAC
  (asp)-to-CAC (his) mutation in the HBA1 gene.
  See Szelenyi et al. (1980), Juricic et al. (1985), Ojwang et al. (1985),
  and Suarez et al. (1985).
  No pathologic effects were observed (Sumida et al., 1973; Sumida, 1975).
  See Wajcman et al. (1972), Nozari et al. (1977), Al-Awamy et al. (1985),
  and Abdo (1989). Schiliro et al. (1991) found this hemoglobin variant in
  Dincol et al. (2003) stated that Hb Setif was first described in an
  Algerian family (Wajcman et al., 1972) and subsequently in Iranian,
  African, Saudi Arabian, and Maltese populations. They identified the
  variant in a Turkish family. Heterozygotes were asymptomatic.
  See Abramov et al. (1980).
  See Zeng et al. (1982) and Yi et al. (1989).
  See Yamaoka et al. (1960) and Hanada and Rucknagel (1964).
  See Liang et al. (1981).
  See Clegg et al. (1969).
  See Vella et al. (1974).
  See Bannister et al. (1972).
  Felice (2003) cited evidence that Hb St. Luke's is a mutation of the
  HBA1 gene.
  See Van Ros et al. (1968), North et al. (1980), and Rhoda et al. (1983).
  Costa et al. (1991) described a family with 1 homozygote and 3
  heterozygotes for Hb Stanleyville II. The pattern of restriction
  fragments demonstrated an associated 3.7-kb alpha-globin gene deletion.
  See Niazi et al. (1975) and Beksedic et al. (1975).
  See Schroeder et al. (1979).
  See Poyart et al. (1976) and Saenz et al. (1978).
  See Moo-Penn et al. (1987). Harano et al. (1996) observed this variant
  in a Japanese man with mild polycythemia.
  See Pootrakul et al. (1977).
  See Schneider et al. (1975).
  See Harano et al. (1983).
  See Beretta et al. (1968) and Prato et al. (1970).
  See Nakatsuji et al. (1981).
  This hemoglobin variant is associated with congenital Heinz body anemia
  (Ohba et al., 1987).
  See Guis et al. (1985). This has been shown to be a mutation of the HBA1
  gene (Cash et al., 1989).
  See Miyaji et al. (1967). In Turkey, Bilginer et al. (1984) found the
  first instance of Hb Ube-2 outside Japan. It occurred in other members
  of the family.
  Cotton et al. (2000) found this rare variant during universal neonatal
  screening. The patients had normal hematologic parameters. The variant
  was found in twins and an older sister and in the father; both parents
  were of Belgian ancestry.
  Shin et al. (2002) described the disorder in a Taiwanese subject.
  See Ohba et al. (1978).
  This variant was found in a Chinese woman (Fleming et al., 1980). See
  Liang et al. (1988).
  See Vella et al. (1973) and Nakatsuji et al. (1983). This has been shown
  to be a mutation of the HBA1 gene (Cash et al., 1989).
  Since alpha-6 asp is involved in salt linkage with alpha-127 lys of the
  same chain, the increased oxygen affinity of hemoglobin variants at this
  position probably reflects loss of this salt bridge in the deoxy state.
  Similar changes have been observed for Hb St. Claude which also cannot
  form the salt bridge because of substitution of threonine for lysine at
  alpha-127. See Como et al. (1986).
  See Zeng et al. (1981). Qualtieri et al. (1995) found this
  fast-migrating hemoglobin variant in a pregnant woman living in Italy.
  See Barclay et al. (1969).
  See Wajcman et al. (1990).
  In the course of measuring hemoglobin A1c by automated cation exchange
  high performance liquid chromatography, Ohba et al. (1990) detected a
  new alpha-chain variant: substitution of alanine by threonine at
  position 110. The abnormal alpha chain comprised about 14% of the total
  alpha chain.
  This hemoglobin, which has a high affinity for oxygen, was detected in a
  Japanese male during a screening survey. The proband was a 53-year-old
  man with liver cirrhosis and hemorrhagic gastritis (Hidaka et al.,
  Zwerdling et al. (1991) investigated the structural abnormality of a
  putative Hb E detected in an African American family with no apparent
  Asian ancestry. The tryptic peptide map formed by high performance
  liquid chromatography showed that the electrophoretic variant was indeed
  the beta glu26-to-lys mutation of Hb E. In addition, however, the
  tryptic map showed an abnormal alpha peptide. The second mutation was a
  substitution of arginine for lysine at residue 56 of the alpha chain.
  The variant was clinically silent.
  See Wajcman et al. (1990).
  See Wajcman et al. (1990, 1993).
  See Vasseur et al. (1990). Substitution of glutamic acid for valine as
  the first residue in the mature protein is accompanied by retention of
  the initiator methionine residue. This may be the only known hemoglobin
  variant with an NH2-extension in the alpha-globin chain. Hb Marseille
  (141900.0171), Hb Doha (141900.0069), and Hb South Florida (141900.0266)
  are examples of hemoglobin variants with an NH2-extension due to
  retention of the initiator methionine in the beta-globin chain. Each is
  due to mutation in the first or second residue of the mature protein.
  Vasseur et al. (1992) found that elongation of the NH2-terminus of the
  alpha-chain, due to inhibition of cleavage of the initiator methionine
  which is then acetylated, modifies the 3-dimensional structure of
  hemoglobin at a region that is known to have an important role in the
  allosteric regulation of oxygen binding. Hb Thionville has a lowered
  affinity for oxygen. In contrast, response to 2,3-diphosphoglycerate is
  In the course of a high performance liquid chromatography survey of Hb
  A1c, Miyashita et al. (1992) detected a new hemoglobin in a 70-year-old
  Japanese male with cerebral infarction and erythremia. Further studies
  revealed a lys40-to-met mutation. The variant showed increased oxygen
  affinity, decreased heme-heme interaction, and a lowered
  2,3-diphosphoglycerate effect.
  (Erythemia, a now almost obsolete synonym for polycythemia and
  erythrocytosis, means increased red blood cell mass.)
  In a diabetic woman of Scottish ancestry, Langdown et al. (1992)
  detected a new hemoglobin variant in the course of determining Hb A1c by
  high performance liquid chromatography. The abnormal hemoglobin
  chromatographed with the Hb A1c fraction. Family studies showed that a
  lys99-to-glu mutation, which was not associated with any hematologic
  disturbance, had occurred de novo. An AAG-to-GAG mutation was presumed
  and was not assigned to either the alpha-2- or alpha-1-globin chain.
  The Hb A(1c) level in the patient of Langdown et al. (1992) was found to
  be very high. In a Japanese individual, Harano et al. (2003) likewise
  found an unexpectedly high Hb A(1c) level as measured by an automatic Hb
  A(1c) analyzer and found by DNA sequencing a change in the first
  nucleotide of codon 99 (AAG-GAG) of the Hb A1 gene.
  Hemoglobin Zaire was found in a 36-year-old patient from Zaire during a
  systematic hemoglobin study. Wajcman et al. (1992) demonstrated that the
  abnormality was the insertion of 5 amino acids--his, leu, pro, ala,
  glu--between glu116 and phe117 of the alpha-globin chain. This sequence
  represented a tandem repeat of the 5 amino acid residues from 112
  through 116, located at the end of the GH corner of the molecule.
  Hemoglobin Grady (141800.0045) involves the insertion of 3 amino acids
  as repeats of residues 116, 117 and 118. Unequal crossing over between
  alleles rather than between the separate alpha-1 and alpha-2 loci was
  thought to be the mechanism in that case and possibly in the case of Hb
  Zaire as well.
  In a newborn infant and the father, a 35-year-old Pakistani man,
  Williamson et al. (1992) described a new hemoglobin with high oxygen
  affinity. The high affinity hemoglobin mutation was identified by HPLC
  peptide mapping and amino acid sequencing; leucine was substituted for
  histidine at amino acid position 89. The mutation occurred at the end of
  the F helix (FG1), a part of the hemoglobin structure critical in
  determining oxygen affinity since it is directly linked to the heme iron
  through the proximal histidine residue F8. This was the first example of
  a mutation at this position of the alpha chain of hemoglobin, although
  there were 2 high affinity mutants that involved the structurally
  equivalent amino acid (beta94 asp) of the beta chain: Hb Barcelona
  (beta94 his; 141900.0016) and Hb Bunbury (beta94 asn; 141900.0035). The
  new hemoglobin was called Hb Luton for the name of the hospital where
  the proband was originally treated. The proband was a neonate in whom 2
  abnormal hemoglobin bands were found, the 2 bands being the mutant forms
  of fetal and adult hemoglobins containing the anomalous alpha globin.
  The father had microcytosis as well as mild polycythemia and was shown
  to have an accompanying alpha-thalassemia trait due to deletion of a
  single alpha-globin gene.
  During a screening for hemoglobinopathies in Sardinia, Ferranti et al.
  (1993) found a new 'silent' hemoglobin variant in 5 apparently unrelated
  newborn babies. The variant was detected by means of isoelectric
  focusing (IEF), and further study revealed a valine for alanine
  substitution at position 71 of the alpha-globin chain. The substitution
  indicated that a C-to-T transition had occurred in the GCG codon for
  alanine which contains one of the 35 unmethylated CpG dinucleotides of
  the HBA1 gene. This observation brought to 13 the number of variants due
  to mutation in the CpGs of the HBA1 gene and raised the possibility that
  unmethylated CpGs, like methylated ones, may be hotspots for mutations.
  In 3 Turkish children with severe thalassemia, Curuk et al. (1992) found
  a GGC-to-GAC mutation in codon 59 of the HBA1 gene resulting in a
  replacement of glycine by aspartic acid. The combination of an
  alpha-thal-1 deletion with the unstable Hb Adana resulted in a severe
  type of Hb H disease.
  During a routine program of hemoglobin screening performed in the United
  Arab Emirates, Abbes et al. (1992) found an electrophoretically
  fast-moving variant in a 9-month-old girl and in several members of her
  family. Amino acid sequencing demonstrated that the new variant had a
  gly18-to-asp substitution. Its functional properties were normal.
  Hb Poitiers was discovered by Bardakdjian et al. (1994) in a 9-year-old
  French Caucasian boy who suffered from chronic anemia. The molecular
  defect consists of a missense mutation at codon 45 of the HBA1 gene,
  changing histidine to aspartate. Hb Poitiers displays a 2-fold increased
  oxygen affinity, a slightly decreased heme-heme interaction, and a
  slightly faster autooxidation rate. In adult hemoglobin (Hb A), the
  histidine residue at position 45 of the alpha-globin gene is the only
  polar contact between the heme group and globin. This position, however,
  seems to allow for moderate variation without dramatic consequences on
  the function of hemoglobin. His45 is replaced by glutamine in Hb Bari
  (141800.0009) and by arginine in Hb Fort de France (141800.0034).
  MOVED TO 141850.0062
  Wajcman et al. (1993) discovered the Hb Caen variant in a 25-year-old
  French Caucasian woman suffering from a mild chronic hemolytic anemia.
  Trypsin degradation of the isolated hemoglobin alpha chain followed by
  high performance liquid chromatography indicated that the valine residue
  at position 132 was replaced by glycine.
  Hb Yuda was discovered in a 65-year-old Japanese female with
  noninsulin-dependent diabetes mellitus (Fujisawa et al., 1992). Gas
  phase Edman degradation indicated that the abnormal hemoglobin alpha
  chain has a substitution of aspartic acid for alanine at residue 130. Hb
  Yuda has a very low oxygen affinity and slightly decreased cooperative
  subunit interaction.
  Hb Capa was discovered in a 28-year-old female in Turkey who was being
  treated for chronic iron deficiency anemia. The hemoglobin showed
  abnormal electrophoretic mobility and was mildly unstable in a heat
  denaturation test. The molecular change was a GAC-to-GGC transition in
  codon 94, resulting in substitution of glycine for aspartic acid. Three
  other substitutions of asp-94 are known: Hb Setif (141800.0130), Hb
  Titusville (141800.0148), and Hb Sunshine Seth (141800.0143). All 4
  variants exhibit mild instability.
  Wajcman et al. (1992) demonstrated an asp126-to-tyr change in the HBA1
  gene in an individual of Puerto Rican descent. At physiologic pH (7.4),
  the oxygen binding of the patient's red blood cells revealed a 40%
  reduction. Hb Montefiore appears to have lower cooperativity than other
  characterized alpha-126 mutants: aspartic acid is replaced by asparagine
  in Hb Tarrant (141800.0146), by histidine in Hb Sassari (141800.0126),
  and by valine in Hb Fukutomi (141800.0163).
  A tyr140-to-his mutation in the HBA1 gene was discovered and
  characterized in a French patient with polycythemia vera by Wajcman et
  al. (1992) and in a newborn baby of Ethiopian descent by Webber et al.
  (1992). This mutation provides an example of an alteration of the
  C-terminus of the alpha chain, a region involved in the mechanisms of
  allosteric regulation. Hb Rouen has increased oxygen affinity and
  decreased cooperativity. A complementary tyr145-to-his mutation (Hb
  Bethesda; 141900.0022) in the hemoglobin beta chain has more dramatic
  effects, suggesting that the alpha and beta chains play unequal roles in
  the overall function of hemoglobin.
  Hb Melusine was found in an Algerian patient during a systematic
  screening for hemoglobinopathies in Luxembourg. Using isoelectric
  focusing and reverse phase high performance liquid chromatography
  (RP-HPLC), Wajcman et al. (1993) determined that the molecular mutation
  at amino acid position 114 of the HBA1 gene changed the residue from
  proline to serine.
  Girodon et al. (1992) reported the characterization of Hb Taybe, a
  hemoglobin variant discovered in a young Arabic woman suffering since
  birth from a severe and highly regenerative hemolytic anemia. DNA
  amplification and sequencing of the HBA1 gene indicated a 3-bp deletion
  (encoding threonine) at amino acid position 38 or 39. This variant
  increases the hydrophobicity of the amino acid chain, and it is quite
  Wajcman et al. (1994) described a missense mutation involving the same
  codon as that involved in Hb Chesapeake (141800.0018), the first high
  oxygen affinity hemoglobin variant to be described in association with
  polycythemia (Charache et al., 1966). Hb Chesapeake has an arg92-to-leu
  substitution; Hb Cemenelum has an arg92-to-trp substitution. Hb J (Cape
  Town) (141800.0063) has a substitution (arg92-to-gln) in the same codon.
  Hb Cemenelum was discovered in a French diabetic patient with no
  hematologic abnormalities. The purified abnormal hemoglobin, like Hb J
  (Cape Town), displayed only a 1.5- to 2-fold increased oxygen affinity.
  The findings demonstrate that the degree to which the functional
  properties are altered by changes in key residues at the alpha-beta
  interface depends upon the specific residue occupying this position.
  Hb Ramona was accidentally detected by isoelectrofocusing in a pregnant
  woman of part Spanish descent; its mobility was slightly faster than
  that of Hb A. A TAT-to-TGT change was found at codon 24, corresponding
  to a replacement of tyrosine by cysteine.
  In a 72-year-old woman born in Czechoslovakia, Wajcman et al. (1994)
  found a lys7-to-asn mutation when investigating the basis for an
  abnormal level of Hb A1c. No abnormal hematologic features were
  In a 31-year-old man of Portuguese origin who had suffered from diabetes
  mellitus since the age of 15 years, Wajcman et al. (1994) found an
  abnormal hemoglobin during measurement of Hb A1c by an
  isoelectrofocusing study. There were no abnormal hematologic features.
  Kister et al. (1995) described a new hemoglobin variant in a 73-year-old
  woman from Roanne in central France. She suffered from mild chronic
  hemolytic anemia. An asp94-to-glu substitution was found in the alpha-1
  chain. Aspartate-94 is involved in several contacts, both in the deoxy-
  and oxy-structures of the hemoglobin.
  Kazanetz et al. (1995) observed this variant hemoglobin in an adult male
  in Granada, Spain, who was evaluated because of severe iron deficiency
  anemia. Sequencing of the HBA1 gene showed 2 nucleotide changes. One was
  a simple polymorphism, as both GCG and GCT code for alanine (at codon
  120). The second mutation was a GCC-to-TCC change at codon 123 resulting
  in replacement of alanine by serine. The replacement caused slight
  differences in the IEF and reversed-phase HPLC experiments, but the
  stability of the hemoglobin was normal. Family studies were not
  performed; thus, whether the 2 mutations were in coupling or repulsion
  was not known.
  In 3 members of a Tunisian family, Darbellay et al. (1995) identified a
  leu129-to-pro substitution in the HBA1 gene by sequencing the entirety
  of the HBA2 and HBA1 genes. In the heterozygous state, the variant was
  manifested by microcytosis, whereas the homozygous state showed moderate
  anemia with marked microcytosis.
  MOVED TO 141850.0068
  By tiny abnormalities observed during isoelectrofocusing, Wajcman et al.
  (1995) identified this electrophoretically silent variant in 3 members
  of a Caucasian-French family. This hemoglobin was the first alpha-chain
  variant that involved position 64. In the beta chain, the corresponding
  position, E14, is also occupied by an alanine residue; in Hb Seattle
  (141900.0256), it is replaced by aspartic acid (ala70-to-asp).
  Wajcman et al. (1995) found this variant hemoglobin during a systematic
  study of the iron status in a 6-month-old baby and his mother who
  originated from Chad in North Central Africa.
  Wajcman et al. (1995) found this variant in a 35-year-old pregnant woman
  of Caucasian origin who lived in Luxembourg. The abnormal Hb was also
  found in one of her daughters.
  At the Fuchu Municipal Medical Center in Tokyo, Harano et al. (1995)
  identified 2 Hb variants in the course of assaying glycated hemoglobin,
  Hb A(1c), of the peripheral blood by cation exchange HPLC. Structural
  analyses demonstrated that 1 patient had a his72-to-tyr substitution and
  the other an asn97-to-his substitution (141800.0197) of the alpha-globin
  chain. These were named Hb Fuchu-I and Hb Fuchu-II, respectively. Both
  were healthy adults.
  See 141800.0196.
  In a 54-year-old Dutch woman under treatment for diabetes mellitus,
  Giordano et al. (1996) incidentally found a silent alpha-chain variant
  on testing for glycated hemoglobin. A CAC-to-CAA transversion was
  predicted to result in substitution of glutamine for histidine at
  residue 72 in the HBA1 gene.
  HBA1, 24-BP DEL
  Wajcman et al. (1998) described Hb J-Biskra, a variant hemoglobin
  consisting of deletion of 24 nucleotides from the HBA1 gene and 8 amino
  acid residues from the alpha-globin chain: residues 50-57, 51-58, or
  52-59. This variant was mildly unstable in vitro only, and there was no
  hematologic or biochemical evidence of hemolysis in affected family
  members. Wajcman et al. (1998) stated that this was the largest deletion
  reported to that time in a hemoglobin molecule that is expressed at an
  almost normal level in the red blood cell.
  Hb Godavari is the fourth example of a substitution involving neutral
  residues at position 95 of the alpha-1 chain. In all of these variants,
  the electrophoretic pattern suggested that the structural modification
  unmasks a charged residue in the alpha-1/beta-2 contact area. The other
  examples are Hb Denmark Hill, pro95 to ala (141800.0027); Hb G
  (Georgia), and pro95 to leu (141800.0038). Hb Godavari shared the same
  electrophoretic properties as these variants, but displayed minimal
  alterations of the oxygen-binding properties. Wajcman et al. (1998)
  identified Hb Godavari in 2 families of different ethnic origin. The
  first case, found in the Netherlands, involved an Indian patient. The
  second case was identified a few months later in an African family from
  Mali, living in France.
  Hamaguchi et al. (1998) reported a neutral (silent) hemoglobin variant,
  designated Hb Oita, in which a change from CAC to CCC caused a
  his45-to-pro substitution. In Hb Bari (141800.0009), his45 is replaced
  by gln. In Hb Fort de France (141800.0034), his45 is replaced by arg. In
  Hb Portiers (141800.0176), his45 is replaced by asp.
  In a Greek child with Hb H disease, Traeger-Synodinos et al. (1999)
  found deletion of codon 62 of the alpha-1 gene, leading to
  alpha-plus-thalassemia. Codon 62 encodes a valine residue at the E11
  alpha helix, which is located in the interior of the heme pocket.
  Substitutions of this valine with other amino acid residues in the alpha
  as well as beta polypeptide chains lead, in the heterozygous carrier,
  either to Hb M disease or to congenital nonspherocytic hemolytic anemia.
  Traeger-Synodinos et al. (1999) assumed that deletion of val at position
  62 disrupted the conformation of the alpha chain to such an extent that
  the mutated subunit was rapidly removed by proteolysis. The final result
  was an alpha-thalassemia phenotype rather than an unstable hemoglobin
  syndrome. This conclusion was supported by the apparent absence of an
  abnormal alpha chain in the peripheral blood of the patient. Hb Evans
  (141850.0006) is a val62-to-met mutation of the HBA2 gene and was found
  in a patient with mild hemolytic anemia. Four amino acid substitutions
  at position 67(E11)val of the beta chain lead to instability of the Hb
  tetramer and an anemia of variable degrees in the heterozygotes. One of
  these substitutions, val67 to glu (141900.0163), results in the stable
  Hb M-Milwaukee-I.
  HBA1, HIS103TYR 
  Lacan et al. (1999) detected Hb Charolles in a 46-year-old patient who
  presented with microcytosis and hypochromia. It was easily detected by
  isoelectrofocusing and high performance liquid chromatography. It
  accounted for 11% of the total hemoglobin. The amino acid change
  resulted from a CAC-to-TAC change in codon 103.
  In a French family from the north of France, Prehu et al. (1999) found a
  new HBA1 variant in 5 members. The variant was initially detected during
  measurement of glycated hemoglobin in a woman originating from Roubaix.
  Codon 55 in exon 2 was found to have a heterozygous change from GTT
  (val) to CTT (leu). This was a neutral variant.
  In a woman from Cameroon, Prehu et al. (2001) identified a new
  hemoglobin variant, designated Hb Douala, with a C-to-T transition
  (TCT-TTT) in the HBA1 gene, resulting in a ser3-to-phe (S3F) amino acid
  substitution. The patient was also heterozygous for Hb S (141900.0243)
  and for a 3.7-kb deletional alpha-thalassemia.
  HBA1, 21-BP INS-DUP 
  In a patient of Iranian descent with the hematologic profile of
  alpha-plus-thalassemia characterized by mild microcytosis, Waye et al.
  (2001) found a 21-bp insertion/duplication that gave rise to a predicted
  alpha-globin chain containing a duplication of amino acid residues
  HBA1, 33-BP DEL 
  In a patient of Greek descent with the hematologic profile of
  alpha-plus-thalassemia characterized by mild microcytosis, Waye et al.
  (2001) found a 33-bp deletion in the HBA1 gene resulting in a predicted
  alpha-globin chain missing amino acid residues 64-74.
  Harteveld et al. (2002) reported a 69-year-old Dutch woman monitored for
  diabetes mellitus in whom Hb A(L1c) analysis revealed a clinically
  silent hemoglobin variant, asn9 to lys (N9K), due to an AAC-to-AAG
  transversion in heterozygous state. The mutation was identical to that
  found at the same position in the HBA2 gene that leads to a variant
  named Hb Park Ridge (141850.0048).
  In a 34-year-old Caucasian male of Swedish ancestry who lived in
  Saratoga Springs, New York, Hoyer et al. (2003) identified a hemoglobin
  variant with abnormal oxygen affinity, designated Hb Saratoga Springs.
  There was no family history of erythrocytosis. The patient had no
  smoking history. A change of codon 40 of the HBA1 gene from AAG to AAC
  resulted in a lys40-to-asn (K40N) change. Lys40 is replaced by glu in Hb
  Kariya (141800.0081), and by met in Hb Kanagawa (141800.0169). Both of
  these hemoglobins had been shown to have increased oxygen affinity, but
  neither was associated with erythrocytosis.
  In a 7-year-old girl living near the town of Die in southeast France,
  Lacan et al. (2004) identified a val93-to-ala (V93A) mutation in the
  HBA1 gene. The family was of French Caucasian origin.
  In a 72-year-old woman of French Caucasian origin living in the city of
  Beziers in the south of France, Lacan et al. (2004) identified a
  lys99-to-asn (K99N) mutation in the HBA1 gene. The variant was found
  during the determination of Hb A(1c) by high performance liquid
  chromatography (HPLC) in this diabetic patient. Hematologic data were
  normal, without hepatomegaly or splenomegaly.
  In a 32-year-old Somali male living in the Netherlands who was being
  monitored for diabetes mellitus, Harteveld et al. (2004) identified Hb S
  (141900.0243) in heterozygous state and a heterozygous C-to-G
  transversion in the HBA1 gene, resulting in a his89-to-gln (H89Q)
  substitution. The H89Q mutation had previously been described in a
  Yemenite woman and 2 apparently unrelated Somali males (Hoyer et al.,
  2002), and had been designated Hb Buffalo. No hematologic abnormality
  had been associated with the allelic variant in this or other cases. In
  addition to Hb Buffalo, 4 amino acid substitutions had been reported at
  codon 89: Hb Luton (his89 to leu; 141800.0172), Hb Villeurbanne (his89
  to tyr; 141800.0213), Hb Tokyo (his89 to pro; 141800.0214), and Hb
  Tamano (his89 to arg; 141800.0215).
  Deon et al. (1997) identified a his89-to-tyr (H89Y) mutation in the HBA1
  gene as the defect in Hb Villeurbanne.
  Harteveld et al. (2004) stated that Hb Tokyo carries a his89-to-pro
  (H89P) mutation in the HBA1 gene.
  Harteveld et al. (2004) stated that Hb Tamano carries a his89-to-arg
  (H89R) mutation in the HBA1 gene.
  In a 4-year-old Caucasian boy investigated for fatigue and microcytosis,
  Brennan et al. (2005) found a GGC-to-AGC transition at codon 51 in the
  HBA1 gene, resulting in a gly51-to-ser substitution (G51S). The mutation
  was thought not to be the cause of the microcytosis as it was detected
  also in the boy's father who had normal red cell indices.
  HBA1, CYS104SER 
  In an 8-year-old black female of Surinamese origin with a mild
  alpha-thalassemia phenotype, Harteveld et al. (2005) identified
  homozygosity for a TGC-to-AGC transversion in the HBA1 gene, resulting
  in a cys104-to-ser substitution. Cysteine-104 is involved in alpha/beta
  globin contact and had been described as a critical amino acid of the
  HBA2 chain when substituted by a tyrosine (cys104 to tyr) in Hb
  Sallanches (141850.0031).
  HBA1, 149709T-C 
  De Gobbi et al. (2006) studied 148 individuals from Melanesia with
  alpha-thalassemia, including 5 with HbH disease, in whom none of the
  theretofore described molecular defects could be found. The pattern of
  inheritance suggested that individuals with HbH disease were homozygous
  for a codominant defect, referred to as (alpha-alpha)T, causing
  alpha-thalassemia with a predicted genotype of
  (alpha-alpha)T/(alpha-alpha)T. In situ RNA hybridization in erythroid
  cells from an affected individual from Lamen Island (Vanuatu) detected
  substantially fewer nuclear transcripts from the alpha-globin genes than
  from the beta-globin genes. DNA FISH in 2 affected individuals showed
  that the alpha-globin cluster was present at its normal location of
  chromosome 16, and no deletions or chromosomal rearrangements were
  detected in any of these individuals. Linkage analysis showed that the
  disease phenotype in individuals was derived from telomeric chromosome
  16 T. Only the C allele of SNP195 (C or T, located at coordinate 149709)
  segregated with thalassemia in the affected families and showed complete
  association with the (alpha-alpha)T haplotype. This allele was not found
  in a separate analysis of 131 nonthalassemic Melanesian individuals.
  SNP195 changes the sequence 5-prime-TAATAA-3-prime (T allele) to
  5-prime-TGATAA-3-prime (C allele), potentially creating a new binding
  site for the key erythroid transcription factor GATA1. GATA1 binds at
  the C allele of SNP195 in vivo. SNP195 creates a new promoter-like
  element between the upstream regulatory elements and their cognate
  promoters. This element, when activated, causes significant
  downregulation of the alpha-D, alpha-2, and alpha-1 genes that lie
  downstream, thereby causing alpha-thalassemia.
  HBA1, 1-BP DEL, 354C 
  In a newborn of mixed black and Chinese descent who carried the
  Southeast Asian alpha-0-thal deletion, Eng et al. (2006) also found a
  1-bp deletion of cysteine from codon 78 in exon 2 of the HBA1 gene,
  resulting in a frameshift and premature termination at codon 83.
  In a 27-year-old woman with mild compensated hemolytic anemia, Brennan
  and Matthews (1997) identified Hb Auckland, a his87-to-asn substitution
  in the HBA1 gene.
  HEMOGLOBIN J (INDIA). See Raper (1957).
  HEMOGLOBIN J (MALAYA). See Lehmann (1962).
  HEMOGLOBIN K (CALCUTTA). Fast hemoglobin. See Lehmann (1962).
  HEMOGLOBIN K (MADRAS). See Ager and Lehmann (1957).
  HEMOGLOBIN KARAMOJO. See Allbrook et al. (1965).
  HEMOGLOBIN L (BOMBAY). See Sukumaran and Pik (1965).
  HEMOGLOBIN M (RESERVE). Reduced oxygen affinity and decreased reversible
  oxygen-binding capacity (Overly et al., 1967).
  HEMOGLOBIN N, ALPHA TYPE. An alpha chain anomaly was deduced from
  molecular hybridization experiments with canine hemoglobin (Silvestroni
  et al., 1963). Other hemoglobin N variants have a beta change.
  HEMOGLOBIN NICOSIA. See Fessas et al. (1965).
See Also:
  Al-Awamy et al. (1985); Baklouti et al. (1988); Barg et al. (1982);
  Barton et al. (1982); Brittenham et al. (1980); Davis et al. (1979);
  Dincol et al. (1994); Dozy et al. (1979); Embury et al. (1979); Harano
  et al. (1983); Harano et al. (1983); Harano et al. (1983); Harano
  et al. (1984); Harano et al. (1982); Hess et al. (1983); Higgs et
  al. (1981); Hill et al. (1985); Huisman and Miller (1976); Kan et
  al. (1979); Kielman et al. (1993); Li et al. (1990); Liang et al.
  (1981); Liebhaber et al. (1980); Marinucci et al. (1979); Meloni et
  al. (1980); Ohba et al. (1978); Phillips et al. (1979); Phillips et
  al. (1980); Pobedimskaya et al. (1994); Priest et al. (1989); Proudfoot
  and Maniatis (1980); Romao et al. (1992); Schroeder and Jones (1965);
  Shimizu et al. (1965); Southern  (1975); Vella et al. (1974); Wainscoat
  et al. (1983); Wajcman et al. (1989); Wajcman et al. (1990); Wajcman
  et al. (1992); Wajcman et al. (1992); Wajcman et al. (1993); Wajcman
  et al. (1990); Weatherall and Clegg (1979); Zimmer et al. (1980)
  1. Abbes, S.; M'Rad, A.; Fitzgerald, P. A.; Dormer, P.; Blouquit,
  Y.; Kister, J.; Galacteros, F.; Wajcman, H.: Hb Al-Ain Abu Dhabi
  [alpha-18 (A16) gly-to-asp]: a new hemoglobin variant discovered in
  an Emiratee family. Hemoglobin 16: 355-362, 1992.
  2. Abdo, M. Z.: Hb Setif (alpha94(G1)asp-to-tyr) in a Saudi Arabian
  family. Hemoglobin 13: 737-742, 1989.
  3. Abramov, A.; Lehmann, H.; Robb, L.: Hb Shaare Zedek (alpha56 E5
  lys-to-glu). FEBS Lett. 113: 235-237, 1980.
  4. Abramson, R. K.; Rucknagel, D. L.; Shreffler, D. C.; Saave, J.
  J.: Homozygous Hb J Tongariki: evidence for only one alpha chain
  structural locus in Melanesians. Science 169: 194-196, 1970.
  5. Adams, J. G., III: Hemoglobin Ann Arbor: disturbance in the coordinated
  biosynthesis of globin chains? Ann. N.Y. Acad. Sci. 241: 232-241,
  6. Adams, J. G., III; Winter, W. P.; Rucknagel, D. L.; Spencer, H.
  H.: Biosynthesis of hemoglobin Ann Arbor: evidence for catabolic
  and feedback regulation. Science 176: 1427-1429, 1972.
  7. Ager, J. A. M.; Lehmann, H.: Haemoglobin K in an East Indian and
  his family. Brit. Med. J. 1: 1449-1450, 1957.
  8. Ager, J. A. M.; Lehmann, H.; Vella, F.: Haemoglobin 'Norfolk':
  a new haemoglobin found in an English family. Brit. Med. J. 2: 539-541,
  9. Ahmad, A.; Naqvi, S.; Ehsanullah, S.; Zaidi, Z. H.: Abnormal hemoglobins-11
  = Hb (Karachi), an alpha chain abnormality at position 5 ala-to-pro. J.
  Pakistan Med. Assoc. 36: 206-208, 1986.
  10. Al-Awamy, B.; Niazi, G. A.; Wilson, J. B.; Huisman, T. H. J.:
  Hb Setif or alpha94(G1)asp-to-tyr observed in a Saudi Arabian family. Hemoglobin   9:
  87-90, 1985.
  11. Al-Awamy, B. H.; Niazi, G. A.; Naeem, M. A.; Wilson, J. B.; Huisman,
  T. H. J.: Hemoglobin Handsworth or alpha18(A16)gly-to-arg in a Saudi
  newborn. Hemoglobin 9: 183-186, 1985.
  12. Alberti, R.; Mariuzzi, G. M.; Artibani, L.; Bruni, E.; Tentori,
  L.: A new haemoglobin variant: J-Rovigo alpha 53 (E-2) alanine to
  aspartic acid. Biochim. Biophys. Acta 342: 1-4, 1974.
  13. Allbrook, D.; Barnicot, N. A.; Dance, N.; Lawler, S. D.; Marshall,
  R.; Mungai, J.: Blood groups, haemoglobin and serum factors of the
  Karamojo. Hum. Biol. 37: 217-237, 1965.
  14. Allen, S. J.; O'Donnell, A.; Alexander, N. D. E.; Alpers, M. P.;
  Peto, T. E. A.; Clegg, J. B.; Weatherall, D. J.: Alpha(+)-thalassemia
  protects children against disease caused by other infections as well
  as malaria. Proc. Nat. Acad. Sci. 94: 14736-14741, 1997.
  15. Ameri, A.; Fairbanks, V. F.; Yanik, G. A.; Mahdi, F.; Thibodeau,
  S. N.; McCormick, D. J.; Boxer, L. A.; McDonagh, K. T.: Identification
  of the molecular genetic defect of patients with methemoglobin M Kankakee
  (M-Iwate), alpha-87 (F8) his-to-tyr: evidence for an electrostatic
  model of alpha-M hemoglobin assembly. Blood 94: 1825-1826, 1999.
  16. Assum, G.; Griese, E.-U.; Horst, J.: Detection of a restriction
  site polymorphism within the human alpha-globin gene complex. Hum.
  Genet. 69: 144-146, 1985.
  17. Baglioni, C.: A chemical study of hemoglobin-Norfolk. J. Biol.
  Chem. 237: 69-74, 1962.
  18. Baglioni, C.; Lehmann, H.: Chemical heterogeneity of haemoglobin
  O. Nature 196: 229-231, 1962.
  19. Baklouti, F.; Baudin-Chich, V.; Kister, J.; Marden, M.; Teyssier,
  G.; Poyart, C.; Delaunay, J.; Wajcman, H.: Increased oxygen affinity
  with normal heterotropic effects in hemoglobin Loire (alpha88 (F9)
  ala-to-ser). Europ. J. Biochem. 177: 307-312, 1988.
  20. Baklouti, F.; Francina, A.; Dorleac, E.; Baudin-Chich, V.; Gombaud-Saintonge  ,
  G.; Plauchu, H.; Wajcman, H.; Delaunay, J.; Godet, J.: Asymptomatic
  association of hemoglobin Dunn (alpha-6(A4)asp-to-asn) and hemoglobin
  O-Arab (beta-121[GH4]glu-to-lys) in a Moroccan man. Am. J. Hemat. 27:
  253-256, 1988.
  21. Bannister, W. H.; Grech, J. L.; Plese, C. F.; Smith, L. L.; Barton,
  B. P.; Wilson, J. B.; Reynolds, C. A.; Huisman, T. H. J.: Hemoglobin
  St. Luke's or alpha 95 arg (G2). Europ. J. Biochem. 29: 301-307,
  22. Barclay, G. P. T.; Charlesworth, D.; Lehmann, H.: Abnormal haemoglobins
  in Zambia: a new hemoglobin Zambia alpha 60 (E9) lysine to asparagine. Brit.
  Med. J. 2: 595-596, 1969.
  23. Bardakdjian, J.; Kister, J.; Wajcman, H.; Boulard, P.; Bohn, B.;
  Blouquit, Y.; Galacteros, F.: Hb Poitiers [alpha45 (CE3) his-to-asp]:
  a new hemoglobin variant with a two-fold increase in oxygen affinity. Hemoglobin   18:
  1-9, 1994.
  24. Bardakdjian-Michau, J.; Galacteros, F.; Craescu, C. T.: Functional
  and NMR studies of Hb Sassari (asp126-alpha-to-his): role of the inter-subunit
  contacts in the affinity control of human hemoglobin. Biochim. Biophys.
  Acta 1041: 250-253, 1990.
  25. Bardakdjian-Michau, J.; Rosa, J.; Galacteros, F.; Lancelot, M.;
  Marquart, F. X.: Hb Reims (alpha23(B4)glu-to-gly): a new alpha chain
  variant with slightly decreased stability. Hemoglobin 13: 733-735,
  26. Barg, R.; Barton, P.; Caine, A.; Clements, R. L.; Ferguson-Smith,
  M. A.; Malcolm, S.; Morrison, N.; Murphy, C. S.: Regional localization
  of the human alpha-globin gene to the short arm of chromosome 16 (16p12-pter)
  using both somatic cell hybrids and in situ hybridization. (Abstract) Cytogenet.  
  Cell Genet. 32: 252-253, 1982.
  27. Barton, P.; Malcolm, S.; Murphy, C.; Ferguson-Smith, M. A.: Localization
  of the human alpha-globin gene cluster to the short arm of chromosome
  16 (16p12-16pter) by hybridization in situ. J. Molec. Biol. 156:
  269-278, 1982.
  28. Baudin, V.; Baklouti, F.; Wajcman, H.; Delaunay, J.: Hemoglobin
  Aichi (alpha50 (CE8) his-to-arg) in a French Caucasian patient. Hemoglobin 11:
  145-149, 1987.
  29. Baur, E. W.: Hb alpha 2 glu beta 2(Hb I) in a Caucasian family:
  independent mutation or common origin? Humangenetik 6: 368-372,
  30. Beale, D.; Lehmann, H.: Abnormal haemoglobins and the genetic
  code. Nature 207: 259-261, 1965.
  31. Beaven, G. H.; Hornabrook, R. W.; Fox, R. H.; Huehns, E. R.:
  Occurrence of heterozygotes and homozygotes for the alpha-chain haemoglobin
  variant Hb-J (Tongariki) in New Guinea. Nature 235: 46-47, 1972.
  32. Beckman, L.; Christodoulou, C.; Fessas, P.; Loukopoulos, D.; Kaltsoya,
  A.; Nilsson, L.-O.: A Swedish haemoglobin variant. Acta Genet. Statist.
  Med. 16: 362-370, 1966.
  33. Beksedic, D.; Rajevska, T.; Lorkin, P. A.; Lehmann, H.: Hb Serbia
  (alpha112 his-to-arg), a new haemoglobin variant from Yugoslavia. FEBS
  Lett. 58: 226-229, 1975.
  34. Beretta, A.; Prato, V.; Gallo, E.; Lehmann, H.: Haemoglobin Torino--alpha
  43 (CD 1) phenylalanine replaced by valine. Nature 217: 1016-1018,
  35. Betke, K.: Haemoglobin-M: Typen und ihre Differenzierung (Uebersicht).In:
  Lehmann, H.; Betke, K.: Haemoglobin-Colloquium.  Stuttgart: Georg
  Thieme Verlag (pub.)  1962. Pp. 39-47.
  36. Bilginer, A.; Lehmann, H.; Arcasoy, A.: Hemoglobin Ube-2 (alpha68
  asn-to-asp) observed in a Turkish family. Hemoglobin 8: 189-191,
  37. Blackwell, R. Q.; Boon, W. H.; Liu, C. S.; Weng, M. I.: Hemoglobin
  J Singapore: alpha-78 asn to asp; alpha-79 ala to gly. Biochim. Biophys.
  Acta 278: 482-490, 1972.
  38. Blackwell, R. Q.; Jim, R. T. S.; Tan, T. G. H.; Weng, M. I.; Liu,
  C. S.; Wang, C. L.: Hemoglobin G Waimanalo: alpha 64 asp-to-asn. Biochim.
  Biophys. Acta 322: 27-33, 1973.
  39. Blackwell, R. Q.; Liu, C. S.: Hemoglobin G Taichung: alpha74
  asp-to-his. Biochim. Biophys. Acta 200: 70-75, 1970.
  40. Blackwell, R. Q.; Wong, H. B.; Wang, C.-L.; Weng, M. I.; Liu,
  C.-S.: Hemoglobin J-Meerut: alpha 120 ala-to-glu. Biochim. Biophys.
  Acta 351: 7-12, 1974.
  41. Botha, M. C.; Beale, D.; Issacs, W. A.; Lehmann, H.: Hemoglobin
  J Cape Town. Nature 212: 792-794, 1966.
  42. Bowman, B. H.; Barnett, D. R.: Amino-acid substitution in haemoglobin
  I (Texas variant). Nature 214: 499, 1967.
  43. Bowman, J. E.; Bloom, R.; Chen, S. S.; Webber, B. B.; Wilson,
  J. B.; Kutlar, F.; Kutlar, A.; Huisman, T. H. J.: Hb Chicago or alpha136
  (H19) leu-to-met and a G-gamma-G-gamma-globin gene arrangement in
  a black family. Hemoglobin 10: 495-505, 1986.
  44. Boyer, S. H.; Crosby, E. F.; Fuller, G. F.; Ulenurm, L.; Buck,
  A. A.: A survey of hemoglobins in the Republic of Chad and characterization
  of hemoglobin Chad: alpha 23 glu-to-lys. Am. J. Hum. Genet. 20:
  570-578, 1968.
  45. Braconnier, F.; Gacon, G.; Thillet, J.; Wajcman, H.; Soria, J.;
  Maigret, P.; Labie, D.; Rosa, J.: Hemoglobin Fort de France (alpha
  45(CD3) his-to-arg): a new variant with increased oxygen affinity. Biochim.
  Biophys. Acta 477: 223-234, 1977.
  46. Bradley, T. B., Jr.; Boyer, S. H.; Allen, F. H., Jr.: Hopkins-2
  hemoglobin: a revised pedigree with data on blood and serum groups. Bull.
  Johns Hopkins Hosp. 108: 75-79, 1961.
  47. Brennan, S. O.; Chan, T.; Obele, M.; George, P. M.: Hb Riccarton
  (alpha-51(CE9)gly-to-ser): a variant arising from a novel mutation
  in the alpha-1 gene. Hemoglobin 29: 61-64, 2005.
  48. Brennan, S. O.; Matthews, J. R. D.: Hb Auckland (alpha87(F8)his-to-asn):
  a new mutation of the proximal histidine identified by electrospray
  mass spectrometry. Hemoglobin 21: 393-403, 1997.
  49. Brennan, S. O.; Tauro, G. P.; Melrose, W.; Carrell, R. W.: Haemoglobin
  Port Phillip: alpha 91 (FG3) leu-to-pro, a new unstable hemoglobin. FEBS
  Lett. 81: 115-117, 1977.
  50. Breuning, M. H.; Madan, K.; Verjaal, M.; Wijnen, J. T.; Meera
  Khan, P.; Pearson, P. L.: Human alpha-globin maps to pter-p13.3 in
  chromosome 16 distal to PGP. Hum. Genet. 76: 287-289, 1987.
  51. Brimhall, B.; Duerst, M.; Hollan, S. R.; Stenzel, P.; Szelenyi,
  J.; Jones, R. T.: Structural characterizations of hemoglobins J-Buda
  (alpha 61 (E10) lys-to-asn) and G-Pest (alpha 74 (EF3) asp-to-asn). Biochim.
  Biophys. Acta 336: 344-360, 1974.
  52. Brimhall, B.; Hollan, S.; Jones, R. T.; Koler, R. D.; Stocklen,
  Z.; Szelenyi, J. G.: Multiple alpha-chain loci for human hemoglobin.
  (Abstract) Clin. Res. 18: 184, 1970.
  53. Brittenham, G.; Lozoff, B.; Harris, J. W.; Kan, Y. W.; Dozy, A.
  M.; Nayudu, N. V. S.: Alpha globin gene number: population and restriction
  endonuclease studies. Blood 55: 706-708, 1980.
  54. Buckle, V. J.; Higgs, D. R.; Wilkie, A. O. M.; Super, M.; Weatherall,
  D. J.: Localisation of human alpha globin to 16p13.3-pter. J. Med.
  Genet. 25: 847-849, 1988.
  55. Bunn, H. F.; Altman, A. J.; Stangland, K.; Firshein, S. I.; Forget,
  B.; Schmidt, G. J.; Jones, R. T.: Hemoglobins Aida (alpha 64 asp-to-asn)
  and D-Los Angeles (beta 121 glu-to-gln) in an Asian-Indian family. Hemoglobin 2:  
  531-540, 1978.
  56. Cabannes, R.; Renaud, R.; Mauran, A.; Pennors, H.; Charlesworth,
  D.; Price, B. G.; Lehmann, H.: Two fast haemoglobins in Ivory-Coast:
  Hb K Woolwich and a new haemoglobin Hb J Abidjan (alpha 51 gly-to-asp). Nouv.
  Rev. Franc. Hemat. 12: 289-300, 1972.
  57. Carstairs, K. C.; Raulfs, A.; Kutlar, A.; Chen, S. S.; Webber,
  B. B.; Wilson, J. B.; Huisman, T. H. J.: Hb Fort Worth or alpha(2)27(B8)glu-to-g  ly
  in a black family from Canada. Hemoglobin 9: 201-205, 1985.
  58. Carver, M. F. H.; Kutlar, A.: International Hemoglobin Information
  Center: variant list. Hemoglobin 19: 37-149, 1995.
  59. Cash, F. E.; Monplaisir, N.; Goossens, M.; Liebhaber, S. A.:
  Locus assignment of two alpha-globin structural mutants from the Caribbean
  Basin: alpha Fort de France (alpha(45-arg)) and alpha Spanish Town
  (alpha(27-val)). Blood 74: 833-835, 1989.
  60. Charache, S.; Weatherall, D. J.; Clegg, J. B.: Polycythemia associated
  with a hemoglobinopathy. J. Clin. Invest. 45: 813-822, 1966.
  61. Chih-chuan, L.; Hai-nan, T.; Kuo-feng, C.: Hemoglobin Handsworth
  (alpha 18 (A16) gly-to-arg) in a Chinese. Hemoglobin 5: 191-193,
  62. Chui, D. H. K.; Waye, J. S.: Hydrops fetalis caused by alpha-thalassemia:
  an emerging health care problem. Blood 91: 2213-2222, 1998.
  63. Cleek, M. P.; Gardiner, M. B.; Reese, A. L.; Harris, H. F.; Felice,
  A. E.; Huisman, T. H. J.: The Atlanta family with hemoglobin Grady
  revisited. (Letter) Am. J. Hum. Genet. 35: 1314-1316, 1983.
  64. Clegg, J. B.; Charache, S.: The structure of hemoglobin Hopkins-2. Hemoglobi  n 2:
  85-88, 1978.
  65. Clegg, J. B.; Naughton, M. A.; Weatherall, D. J.: Abnormal human
  haemoglobins: separation and characterization of the alpha and beta
  chains by chromatography, and the determination of two new variants,
  Hb Chesapeake and Hb J (Bangkok). J. Molec. Biol. 19: 91-108, 1966.
  66. Clegg, J. B.; Weatherall, D. J.; Boon, W. H.; Mustafa, D.: Two
  new haemoglobin variants involving proline substitutions. Nature 222:
  379-380, 1969.
  67. Cohen-Solal, M.; Manesse, B.; Thillet, J.; Rosa, J.: Haemoglobin
  G Norfolk alpha-85 (F6) asp-to-asn: structural characterization by
  sequenator analysis and functional properties of a new variant with
  high oxygen affinity. FEBS Lett. 50: 163-167, 1975.
  68. Colombo, B.; Vidal, H.; Kamuzora, H.; Lehmann, H.: A new haemoglobin
  J-Habana--alpha 71 (E20) alanine-to-glutamic acid. Biochim. Biophys.
  Acta 351: 1-6, 1974.
  69. Como, P. F.; Barber, S.; Sage, R. E.; Kronenberg, H.: Hemoglobin
  Woodville: alpha6 (A4) aspartic acid-to-tyrosine. Hemoglobin 10:
  135-141, 1986.
  70. Cooper, M. R.; Kraus, A. P.; Felts, J. H.; Myers, R.; Kraus, L.
  M.: A third case of hemoglobin Memphis: sickle cell disease. Am.
  J. Med. 55: 535-541, 1973.
  71. Costa, F. F.; Sonati, M. F.; Zago, M. A.: Hemoglobin Stanleyville
  II (alpha-78 asn-to-lys) is associated with a 3.7-kb alpha-globin
  gene deletion. Hum. Genet. 86: 319-320, 1991.
  72. Cotton, F.; Hansen, V.; Lin, C.; Parma, J.; Cochaux, P.; Damis,
  E.; Vertongen, F.; Gulbis, B.: Hb Ube-2 [alpha-68(E17)asn-asp] and
  Hb Hafnia [beta-116(G18)his-gln] observed during neonatal screening
  in Brussels. Hemoglobin 24: 65-69, 2000.
  73. Crookston, J. H.; Beale, D.; Irvine, D.; Lehmann, H.: A new haemoglobin,
  J Toronto (alpha-5 alanine to aspartic acid). Nature 208: 1059-1060,
  74. Crookston, J. H.; Farquharson, H. A.; Beale, D.; Lehmann, H.:
  Hemoglobin Etobicoke: alpha 84(F5) serine replaced by arginine. Canad.
  J. Biochem. 47: 143-146, 1969.
  75. Curuk, M. A.; Altay, C.; Fei, Y.-J.; Kutlar, F.; Baysal, E.; Gu,
  L.-H.; Huisman, T. H. J.: Severe Hb H disease due to a combination
  of the -(alpha)20 kb deletion and Hb Adana, an unstable alpha-1 variant
  with gly-to-asp at alpha-59 (GGC-to-GAC). (Abstract) Blood 80: 81a,
  76. Dahmane-Arbane, M.; Blouquit, Y.; Arous, N.; Bardakdjian, J.;
  Benamani, M.; Riou, J.; Benabadji, M.; Rosa, J.; Galacteros, F.:
  Hemoglobine Boumerdes alpha-37 (C2) pro-to-arg: un nouveau variant
  de la chaine alpha associe a l'hemoglobine S dans une famille algerienne. Nouv.
  Rev. Franc. Hemat. 29: 317-320, 1987.
  77. Darbellay, R.; Mach-Pascual, S.; Rose, K.; Graf, J.; Beris, Ph.
  : Haemoglobin Tunis-Bizerte: a new alpha-1 globin 129 leu-to-pro unstable
  variant with thalassaemic phenotype. Brit. J. Haemat. 90: 71-76,
  78. Daud, D.; Harahap, A.; Setianingsih, I.; Nainggolan, I.; Tranggana,
  S.; Pakasi, R.; Marzuki, S.: The hemoglobin O mutation in Indonesia:
  distribution and phenotypic expression. J. Hum. Genet. 46: 499-505,
  79. Davis, J. R., Jr.; Dozy, A. M.; Lubin, B.; Koenig, H. M.; Pierce,
  H. I.; Stamatoyannopoulos, G.; Kan, Y. W.: Alpha-thalassemia in blacks
  is due to gene deletion. Am. J. Hum. Genet. 31: 569-573, 1979.
  80. De Gobbi, M.; Viprakasit, V.; Hughes, J. R.; Fisher, C.; Buckle,
  V. J.; Ayyub, H.; Gibbons, R. J.; Vernimmen, D.; Yoshinaga, Y.; de
  Jong, P.; Cheng, J.-F.; Rubin, E. M.; Wood, W. G.; Bowden, D.; Higgs,
  D. R.: A regulatory SNP causes a human genetic disease by creating
  a new transcriptional promoter. Science 312: 1215-1217, 2006.
  81. Deisseroth, A.; Hendrick, D.: Human alpha-globin gene expression
  following chromosomal dependent gene transfer into mouse erythroleukemia
  cells. Cell 15: 55-63, 1978.
  82. Deisseroth, A.; Nienhuis, A.; Turner, P.; Velez, R.; Anderson,
  W. F.; Ruddle, F. H.; Lawrence, J.; Creagan, R. P.; Kucherlapati,
  R. S.: Localization of the human alpha globin structural gene to
  chromosome 16 in somatic cell hybrids by molecular hybridization assay. Cell 12:  
  205-218, 1977.
  83. Deisseroth, A.; Velez, R.; Nienhuis, A. W.: Hemoglobin synthesis
  in somatic cell hybrids: independent segregation of the human alpha-
  and beta-globin genes. Science 191: 1262-1263, 1976.
  84. Deon, C.; Prome, J. C.; Prome, D.; Francina, A.; Groff, P.; Kalmes,
  G.; Galacteros, F.; Wajcman, H.: Combined mass spectrometric methods
  for the characterization of human hemoglobin variants localized within
  alpha-T9 peptide: identification of Hb Villeurbanne alpha-89 (FG1)
  his-to-tyr. J. Mass Spectrom. 32: 880-887, 1997.
  85. de Traverse, P. M.; Lehmann, H.; Coquelet, M. L.; Beale, D.; Isaacs,
  W. A.: Etude d'une hemoglobine J-alpha non encore decrite, dans une
  famille francaise. Comp. Rend. Soc. Biol. 160: 2270-2272, 1966.
  86. DeVries, A.; Joshua, H.; Lehmann, H.; Hill, R. L.; Fellows, R.
  E.: The first observation of an abnormal hemoglobin in a Jewish family:
  hemoglobin Beilinson. Brit. J. Haemat. 9: 484-486, 1963.
  87. de Weinstein, B. I.; Kutlar, A.; Webber, B. B.; Wilson, J. B.;
  Huisman, T. H. J.: Hemoglobin Daneshgah-Tehran or alpha72(EF1)his-to-arg
  in an Argentinean family. Hemoglobin 9: 409-411, 1985.
  88. Dincol, G.; Dincol, K.; Erdem, S.; Pobedimskaya, D. D.; Molchanova,
  T. P.; Ye, Z.; Webber, B. B.; Wilson, J. B.; Huisman, T. H. J.: Hb
  Capa or alpha-94(G1)asp-to-gly, a mildly unstable variant with an
  A-to-G (GAC-to-GGC) mutation in codon 94 of the alpha-1-globin gene. Hemoglobin   18:
  57-60, 1994.
  89. Dincol, G.; Elam, D.; Kutlar, A.; Kutlar, F.: Hb Setif [alpha-94(G1)asp-to-t  yr
  (alpha-2)] detected in a Turkish family. Hemoglobin 27: 249-252,
  90. Djoumessi, S.; Rousseaux, J.; Descamps, J.; Goudemand, M.; Dautrevaux,
  M.: Hemoglobin Lille, alpha-2(74(EF3) asp-to-ala)beta-2. Hemoglobin 5:
  475-479, 1981.
  91. Dozy, A. M.; Forman, E. N.; Abuelo, D. N.; Barsel-Bowers, G.;
  Mahoney, M. J.; Forget, B. G.; Kan, Y. W.: Prenatal diagnosis of
  hemizygous alpha-thalassemia. JAMA 241: 1610-1613, 1979.
  92. Dozy, A. M.; Kan, Y. W.; Embury, S. H.; Mentzer, W. C.; Wang,
  W. C.: Alpha-globin gene organisation in blacks precludes the severe
  form of alpha-thalassaemia. Nature 280: 605-607, 1979.
  93. Dysert, P. A., II; Head, C. G.; Shih, T. B.; Jones, R. T.; Schneider,
  R. G.: Hb Dallas, alpha 97(G4) asn-to-lys: a new abnormal hemoglobin
  with high oxygen affinity. (Abstract) Blood 60: 53a, 1982.
  94. Eicher, E. M.; Lee, B. K.: Growth hormone receptor (Ghr) and
  hemoglobin alpha-chain pseudogene 3 (Hba-ps3) map proximal to the
  myelocytomatosis oncogene (Myc) on mouse chromosome 15. Mammalian
  Genome 1: 57-58, 1991.
  95. Embury, S. H.; Lebo, R. V.; Dozy, A. M.; Kan, Y. W.: Organization
  of the alpha-globin genes in the Chinese alpha-thalassemia syndromes. J.
  Clin. Invest. 63: 1307-1310, 1979.
  96. Eng, B.; Patterson, M.; Walker, L.; Hoppe, C.; Azimi, M.; Lee,
  H.; Giordano, P. C.; Waye, J. S.: Three new alpha-thalassemia point
  mutations ascertained through newborn screening. Hemoglobin 30:
  149-153, 2006.
  97. Felice, A. E.: Hb St. Luke's (alpha-95(G2)pro-to-arg (alpha-1)).
  (Letter) Hemoglobin 27: 137 only, 2003.
  98. Ferranti, P.; Parlapiano, A.; Malorni, A.; Pucci, P.; Marino,
  G.; Cossu, G.; Manca, L.; Masala, B.: Hemoglobin Ozieri: a new alpha-chain
  variant (alpha-71(E20)ala-to-val): characterization using FAB- and
  electrospray-mass spectrometric techniques. Biochim. Biophys. Acta 1162:
  203-208, 1993.
  99. Fessas, C.; Karaklis, A.; Loukopoulos, D.; Stamatoyannopoulos,
  G.; Fessas, P.: Hemoglobin Nicosia: an alpha-chain variant and its
  combination with beta-thalassaemia. Brit. J. Haemat. 11: 323-330,
  100. Fessas, P.; Kaltsoya, A.; Loukopoulos, D.; Nilsson, L.-O.: On
  the chemical structure of haemoglobin Uppsala. Hum. Hered. 19: 152-158,
  101. Fleming, P. J.; Arnold, B. J.; Thompson, E. O. P.; Hughes, W.
  G.; Morgan, L.: Hb I alpha 16 lys-to-glu and Hb Broussais alpha 90
  lys-to-asn in Australian families. Pathology 10: 317-327, 1978.
  102. Fleming, P. J.; Hughes, W. G.; Farmilo, R. K.; Wyatt, K.; Cooper,
  W. N.: Hemoglobin Westmead (alpha 122(H5) his-to-gln): a new hemoglobin
  variant with the substitution in the alpha-beta contact area. Hemoglobin 4:
  39-52, 1980.
  103. Fleming, P. J.; Sumner, D. R.; Wyatt, K.; Hughes, W. G.; Melrose,
  W. D.; Jupe, D. M. D.; Baikie, M. J.: Hemoglobin Hobart or alpha20
  (B1) his-to-arg: a new alpha chain hemoglobin variant. Hemoglobin 11:
  211-220, 1987.
  104. Flint, J.; Hill, A. V. S.; Bowden, D. K.; Oppenheimer, S. J.;
  Sill, P. R.; Serjeantson, S. W.; Bonna-Kori, J.; Bhatia, K.; Alpers,
  M. P.; Boyce, A. J.; Weatherall, D. J.; Clegg, J. B.: High frequencies
  of alpha-thalassemia are the result of natural selection by malaria. Nature 321:  
  744-751, 1986.
  105. Fujisawa, K.; Hattori, Y.; Ohba, Y.; Ando, S.: Hb Yuda or alpha130
  (H13) ala-to-asp; a new alpha chain variant with low oxygen affinity. Hemoglobin   16:
  435-439, 1992.
  106. Fujiwara, N.: An amino acid substitution in Hb Atago, an abnormal
  human hemoglobin. J. Jpn. Biochem. Soc. 42: 341-349, 1970.
  107. Fujiwara, N.; Maekawa, T.; Matsuda, G.: Hemoglobin Atago (alpha
  85 tyr): a new abnormal human hemoglobin found in Nagasaki. Int.
  J. Protein Res. 3: 35-39, 1971.
  108. Fung, T. Y.; Kin, L. T.; Kong, L. C.; Keung, L. C.: Homozygous
  alpha-thalassemia associated with hypospadias in three survivors. Am.
  J. Med. Genet. 82: 225-227, 1999.
  109. Gajdusek, D. C.; Guiart, J.; Kirk, R. L.; Carrell, R. W.; Irvine,
  D.; Kynoch, P. A. M.; Lehmann, H.: Haemoglobin J Tongariki (alpha
  115 alanine to aspartic acid): the first new haemoglobin variant found
  in a Pacific (Melanesian) population. J. Med. Genet. 4: 1-6, 1967.
  110. Gammack, D. B.; Huehns, E. R.; Lehmann, H.; Shooter, E. M.:
  The abnormal polypeptide chains in a number of haemoglobin variants. Acta
  Genet. Statist. Med. 11: 1-16, 1961.
  111. Gandini, E.; Dallapiccola, B.; Laurent, C.; Suerine, E. F.; Forabosco,
  A.; Conconi, G.; Del Senno, L.: Evidence for localisation of genes
  for human alpha-globin on the long arm of chromosome 4. Nature 265:
  65-66, 1977.
  112. Garel, M. C.; Goossens, M.; Oudart, J. L.; Blouquit, Y.; Thillet,
  J.; Rosa, J.: Hemoglobin Dakar = Hb Grady: demonstration by a new
  approach to the analysis of the tryptic core region of the alpha chain
  and oxygen equilibrium properties. Biochim. Biophys. Acta 453: 459-471,
  113. Gerald, P. S.; Cook, C. D.; Diamond, L. K.: Hemoglobin M. Science 126:
  300-301, 1957.
  114. Gerald, P. S.; Efron, M. L.: Chemical studies of several varieties
  of Hb M. Proc. Nat. Acad. Sci. 47: 1758-1767, 1961.
  115. Gerhard, D. S.; Kawasaki, E. S.; Bancroft, F. C.; Szabo, P.:
  Localization of a unique gene by direct hybridization in situ. Proc.
  Nat. Acad. Sci. 78: 3755-3759, 1981.
  116. Giordano, P. C.; Fodde, R.; Amons, R.; Ploem, J. E.; Bernini,
  L. F.: Hb J-Anatolia (alpha61(E10)lys-to-thr): structural characterization
  and gene localization of a new alpha chain variant. Hemoglobin 14:
  119-128, 1990.
  117. Giordano, P. C.; Harteveld, C. L.; Kok, P. J. M. J.; Geenen,
  A.; Batelaan, D.; Amons, R.; Bernini, L. F.: Hb Gouda (alpha72(EF1)his-to-gln),
  a new silent alpha-chain variant. Hemoglobin 20: 21-29, 1996.
  118. Girodon, E.; M'Rad, A.; Martin, J.; Goossens, M.; Galacteros,
  F.; Rosa, J.; Gisselbrecht, C.; Boiron, M.; Cohen, I. J.; Jaber, L.;
  Tamari, H.; Goshen, J.; Zaizov, R.; Wajcman, H.: Hb Taybe (alpha
  38 or 39 THR deleted): a new unstable alpha chain hemoglobin variant.
  (Abstract) Blood 80 (suppl. 1): 388a, 1992.
  119. Gonzalez Redondo, J. M.; Wilson, J. B.; Kutlar, A.; Huisman,
  T. H. J.; Sicilia, A.; Romero, C.; Fernandes Fuertes, I.: Hb J-Pontoise
  or alpha63(E12)ala-to-asp in four members of a Spanish family. Hemoglobin 11:
  47-50, 1987.
  120. Goossens, M.; Dozy, A. M.; Embury, S. H.; Zachariadis, Z.; Hadjiminas,
  M. G.; Stamatoyannopoulos, G.; Kan, Y. W.: Triplicated alpha-globin
  loci in humans. Proc. Nat. Acad. Sci. 77: 518-521, 1980.
  121. Gottlieb, A. J.; Restrepo, A.; Itano, H. A.: Hb J (Medellin).
  Chemical and genetic study. Fed. Proc. 23: 172, 1964.
  122. Griffiths, K. D.; Lang, A.; Lehmann, H.; Mann, J. R.; Plowman,
  D.; Raine, D. N.: Haemoglobin Handsworth alpha 18 glycine-to-arginine. FEBS
  Lett. 75: 93-95, 1977.
  123. Groff, P.; Galacteros, F.; Kalmes, G.; Blouquit, Y.; Wajcman,
  H.: HB Luxembourg (alpha24(B5)tyr-to-his): a new unstable variant. Hemoglobin 13  :
  429-436, 1989.
  124. Guis, M.; Mentzer, W. C.; Jue, D. L.; Johnson, M. H.; McGuffey,
  J. E.; Moo-Penn, W. F.: Hemoglobin Twin Peaks: alpha113(GH1) leu-to-his. Hemoglo  bin 9:
  175-177, 1985.
  125. Hamaguchi, K.; Harano, K.; Harano, T.; Sakata, T.: Hb Oita (alpha-45(CE3)hi  s-to-pro):
  a new silent hemoglobin variant. Hemoglobin 22: 347-354, 1998.
  126. Hanada, M.; Ohta, Y.; Imamura, T.; Fejimura, T.; Kawasaki, K.;
  Kosaka, K.; Yamaoka, K.; Seita, M.: Studies of abnormal hemoglobins
  in western Japan. (Abstract) Jpn. J. Hum. Genet. 9: 253-254, 1964.
  127. Hanada, M.; Rucknagel, D. L.: The characterization of hemoglobin
  Shimonoseki. Blood 24: 624-635, 1964.
  128. Hansen, H. A.; Jagenburg, O. R.; Johansson, B. G.: Studies on
  an abnormal hemoglobin causing hereditary congenital cyanosis. Acta
  Paediat. 49: 503-511, 1960.
  129. Harano, K.; Harano, T.; Shibata, S.; Mori, H.; Ueda, S.; Imai,
  K.; Ohba, Y.; Irimajiri, K.: Hb J Oxford (alpha15 (A13) gly-to-asp)
  in Japan. Hemoglobin 8: 197-198, 1984.
  130. Harano, T.; Harano, K.; Hong, Y.-F.; Than, A. M.; Suetsugu, Y.;
  Ohba, K.: The mutation of Hb Turriff (alpha-99(G6)lys-to-glu (AAG-GAG))
  is carried by the alpha-1-globin gene in a Japanese (Hb Turriff-I). Hemoglobin 2  7:
  123-127, 2003.
  131. Harano, T.; Harano, K.; Imai, K.; Terunuma, S.: Hb Swan River
  (alpha6(A4)asp-to-gly) observed in a Japanese man. Hemoglobin 20:
  75-78, 1996.
  132. Harano, T.; Harano, K.; Imai, N.; Ueda, S.; Seki, M.: An electrophoreticall  y
  silent hemoglobin variant, Hb Hekinan (alpha27 (B8) glu-to-asp) found
  in a Japanese. Hemoglobin 12: 61-65, 1988.
  133. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Imai, K.; Seki,
  M.: Hb Handa (alpha90 (FG2) lys-to-met): structure and biosynthesis
  of a new slightly higher oxygen affinity variant. Hemoglobin 6:
  379-389, 1982.
  134. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Imai, K.; Seki,
  M.: Hemoglobin Tokoname (alpha139 (HC 1) lys-to-thr): a new hemoglobin
  variant with a slightly increased oxygen affinity. Hemoglobin 7:
  85-90, 1983.
  135. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Imai, K.; Tsuneshige,
  A.; Uchida, E.; Horiuchi, K.: Hb Le Lamentin (alpha20 (B1) his-to-gln)
  in Japan: structure, function and biosynthesis. Hemoglobin 7: 181-184,
  136. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Imai, K.; Tsuneshige,
  A.; Yamada, H.; Seki, M.; Fukui, H.: Hemoglobin Kariya (alpha40 (C5)
  lys-to-glu) a new hemoglobin variant with an increased oxygen affinity. FEBS
  Lett. 153: 332-334, 1983.
  137. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Mori, H.; Imai,
  K.: Hb Chesapeake (alpha92 (FG4) arg-to-leu) and Hb J Cape Town (alpha92
  (FG4) arg-to-gln) first discovered in Japanese. Hemoglobin 7: 461-465,
  138. Harano, T.; Harano, K.; Shibata, S.; Ueda, S.; Mori, H.; Seki,
  M.: Hemoglobin Aichi (alpha50 (CE8) his-to-arg): a new slightly unstable
  hemoglobin variant discovered in Japan. FEBS Lett. 169: 297-299,
  139. Harano, T.; Harano, K.; Ueda, S.: Hb Owari (alpha121 (H4) val-to-met):
  a new hemoglobin variant with a neutral-to-neutral amino acid substitution
  detected by isoelectric focusing. Hemoglobin 10: 127-134, 1986.
  140. Harano, T.; Harano, K.; Ueda, S.; Shibata, S.; Imai, K.; Ohba,
  Y.; Shinohara, T.; Horio, S.; Nishioka, K.; Shirotani, H.: Hemoglobin
  Kawachi (alpha 44 (CE2) pro-to-arg): a new hemoglobin variant of high
  oxygen affinity with amino acid substitution at alpha(1)-beta(2) contact. Hemogl  obin 6:
  43-49, 1982.
  141. Harano, T.; Harano, K.; Uehara, S.; Matsushita, K.: Two new
  alpha chain variants: Hb Fuchu-I (alpha-72(EF1)his-to-tyr) and Hb
  Fuchu-II (alpha-97(G4)asn-to-his). Hemoglobin 19: 389-395, 1995.
  142. Hardison, R. C.; Sawada, I.; Cheng, J.-F.; Shen, C.-K. J.; Schmid,
  C. W.: A previously undetected pseudogene in the human alpha globin
  gene cluster. Nucleic Acids Res. 14: 1903-1911, 1986.
  143. Harteveld, C. L.; Rozendaal, L.; Blom, N. A.; Lo-A-Njoe, S.;
  Akkerman, N.; Arkestijn, S.; Van Delft, P.; Giordano, P. C.: Hb Oegstgeest
  (alpha-104(G11)cys-to-ser(alpha-1)): a new hemoglobin variant associated
  with a mild alpha-thalassemia phenotype. Hemoglobin 29: 165-169,
  144. Harteveld, C. L.; Van Delft, P.; Akkermans, N.; Arkesteijn, S.;
  Van Rooijen-Nijdam, I. H.; Kok, P. J. M. J.; Versteegh, F. G. A.;
  Giordano, P. C.: Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)],
  observed solely and in the presence of an Hb S [beta-6(A3)glu-to-val]
  heterozygosity. Hemoglobin 28: 223-227, 2004.
  145. Harteveld, C. L.; Van Delft, P.; Plug, R. J.; Erjavec, Z.; Wajcman,
  H.; Giordano, P. C.: Hb Delfzicht [alpha-9(A7)asn-to-lys (alpha-1)]:
  a new, clinically silent hemoglobin variant observed in a Dutch patient. Hemoglo  bin 26:
  181-184, 2002.
  146. Harteveld, C. L.; Wijermans, P. W.; de Ree, J. E. L. M.; Ter
  Hal, P.; Van Delft, P.; Van Rooijen-Nijdam, I. H.; Rasp, E.; Kok,
  P. J. M. J.; Souverijn, J. H. M.; Versteegh, F. G. A.; Giordano, P.
  C.: A new Hb Evanston allele (alpha-14(A12)trp-to-arg) found solely,
  and in the presence of common alpha-thalassemia deletions, in three
  independent Asian cases. Hemoglobin 28: 1-5, 2004.
  147. Hatton, C. S. R.; Wilkie, A. O. M.; Drysdale, H. C.; Wood, W.
  G.; Vickers, M. A.; Sharpe, J.; Ayyub, H.; Pretorius, I. M.; Buckle,
  V. J.; Higgs, D. R.: Alpha-thalassemia caused by a large (62 kb)
  deletion upstream of the human alpha-globin gene cluster. Blood 76:
  221-227, 1990.
  148. Hattori, Y.; Ohba, Y.; Suda, T.; Miura, Y.; Yoshinaka, H.; Miyaji,
  T.: Hemoglobin Guizhou in Japan. Hemoglobin 9: 187-192, 1985.
  149. Hayashi, A.; Yamamura, Y.; Ogita, S.; Kikkawa, H.: Hemoglobin
  M (Osaka), a new variant of hemoglobin M. Jpn. J. Hum. Genet. 9:
  87-94, 1964.
  150. Headlee, M. G.; Nakatsuji, T.; Lam, H.; Wrightstone, R. N.; Huisman,
  T. H. J.: Hb Etobicoke, alpha85(F5) ser-to-arg found in a newborn
  of French-Indian-English descent. Hemoglobin 7: 285-287, 1983.
  151. Heller, P.: Hemoglobin M (Chicago) and M (Kankakee).In: Lehmann,
  H.; Betke, K.: Haemoglobin-Colloquium.  Stuttgart: Georg Thieme
  Verlag (pub.)  1962. Pp. 47-49.
  152. Heller, P.; Weinstein, H. G.; Yakulis, V. J.; Rosenthal, I. M.
  : Hemoglobin M (Kankakee), a new variant of hemoglobin M. Blood 20:
  287-301, 1962.
  153. Hess, J. F.; Fox, M.; Schmid, C.; Shen, C.-K. J.: Molecular
  evolution of the human adult alpha-globin-like gene region: insertion
  and deletion of Alu family repeats and non-Alu DNA sequences. Proc.
  Nat. Acad. Sci. 80: 5970-5974, 1983.
  154. Hidaka, K.; Iuchi, I.; Kobayashi, T.; Katoh, K.; Yaguchi, K.
  : Hb Fukutomi (alpha126(H9)asp-to-val): a new hemoglobin variant with
  high oxygen affinity. Hemoglobin 14: 499-509, 1990.
  155. Higgs, D. R.; Goodbourn, S. E. Y.; Wainscoat, J. S.; Clegg, J.
  B.; Weatherall, D. J.: Highly variable regions of DNA flank the human
  alpha-globin genes. Nucleic Acids Res. 9: 4213-4224, 1981.
  156. Higgs, D. R.; Hunt, D. M.; Drysdale, H. C.; Clegg, J. B.; Pressley,
  L.; Weatherall, D. J.: The genetic basis of Hb Q-H disease. Brit.
  J. Haemat. 46: 387-400, 1980.
  157. Higgs, D. R.; Vickers, M. A.; Wilkie, A. O. M.; Pretorius, I.-M.;
  Jarman, A. P.; Weatherall, D. J.: A review of the molecular genetics
  of the alpha-globin gene cluster. Blood 73: 1081-1104, 1989.
  158. Higgs, D. R.; Wainscoat, J. S.; Flint, J.; Hill, A. V. S.; Thein,
  S. L.; Nicholls, R. D.; Teal, H.; Ayyub, H.; Peto, T. E. A.; Falusi,
  A. G.; Jarman, A. P.; Clegg, J. B.; Weatherall, D. J.: Analysis of
  the human alpha-globin gene cluster reveals a highly informative genetic
  locus. Proc. Nat. Acad. Sci. 83: 5165-5169, 1986.
  159. Hill, A. V. S.; Bowden, D. K.; Trent, R. J.; Higgs, D. R.; Oppenheimer,
  S. J.; Thein, S. L.; Mickleson, K. N. P.; Weatherall, D. J.; Clegg,
  J. B.: Melanesians and Polynesians share a unique alpha-thalassemia
  mutation. Am. J. Hum. Genet. 37: 571-580, 1985.
  160. Hill, A. V. S.; Thein, S. L.; Mavo, B.; Weatherall, D. J.; Clegg,
  J. B.: Non-deletion haemoglobin H disease in Papua New Guinea. J.
  Med. Genet. 24: 767-771, 1987.
  161. Hollan, S. R.; Szelenyi, J. G.; Brimhall, B.; Duerst, M.; Jones,
  R. T.; Koler, R. D.; Stocklen, Z.: Multiple alpha chain loci for
  human haemoglobins: Hb J (Buda) and Hb G (Pest). Nature 235: 47-50,
  162. Hollan, S. R.; Szelenyi, J. G.; Lehmann, H.; Beale, D.: A Boston-type
  haemoglobin M in Hungary: haemoglobin M Kiskunhalas. Haematologica 1:
  11-18, 1967.
  163. Honig, G. R.; Shamsuddin, M.; Tremaine, L. M.; Mason, R. G.;
  Vida, L. N.; Sarnwick, R.; Shahidi, N. T.: Hemoglobin Nigeria (alpha81
  ser-to-cys), a new variant having an inhibitory effect on the gelation
  of sickle hemoglobin. (Abstract) Blood 52 (suppl. 1): 113, 1978.
  164. Honig, G. R.; Shamsuddin, M.; Vida, L. N.; Mompoint, M.; Bowie,
  L.; Jones, E.; Weil, S.: Hb Evanston (alpha 14 trp-to-arg): a new
  variant with thalassemia-like hematologic expression. (Abstract) Blood 60:
  53a, 1982.
  165. Honig, G. R.; Shamsuddin, M.; Zaizov, R.; Steinherz, M.; Solar,
  I.; Kirschmann, C.: Hemoglobin Petah Tikva (alpha 110 ala-to-asp):
  a new unstable variant with alpha-thalassemia-like expression. Blood 57:
  705-711, 1981.
  166. Honig, G. R.; Vida, L. N.; Shamsuddin, M.; Mason, R. G.; Schlumpf,
  H. W.; Luke, R. A.: Hemoglobin Milledgeville (alpha44 (CD2) pro-to-leu):
  a new variant with increased oxygen affinity. Biochim. Biophys. Acta 626:
  424-431, 1980.
  167. Horst, J.; Assum, G.; Griese, E. U.; Eigel, A.; Hampl, W.; Kohne,
  E.: Hemoglobin M Iwate is caused by a C-to-T transition in codon
  87 of the human alpha-1-globin gene. Hum. Genet. 75: 53-55, 1987.
  168. Houjun, L.; Dexiang, L.; Zhiguo, L.; Ping, L.; Ly, L.; Ji, C.;
  Shaozhi, H.: A new fast-moving hemoglobin variant, Hb J-Tashikuergan
  alpha19 (AB1) ala-to-glu. Hemoglobin 8: 391-395, 1984.
  169. Hoyer, J. D.; McCormick, D. J.; Snow, K.; Lawler, J.; Jadick,
  M.; Grageda, R.; Early, J. L.; Ball, C.; Skarda, P.; Kubik, K. S.;
  Holmes, M. W.; Fairbanks, V. F.: Three new variants of the alpha-1-globin
  gene without clinical or hematologic effects: Hb Hagerstown [alpha-44(CE2)pro-to  -ala
  (alpha-1)]; Hb Buffalo [alpha-89(FG1)his-to-gln (alpha-1)], a hemoglobin
  variant from Somalia and Yemen; Hb Wichita [alpha-95(G2)pro-to-gln
  (alpha-1)]; and a second, unrelated, case of Hb Roubaix [alpha-55(E4)val-to-leu
  (alpha-1)]. Hemoglobin 26: 291-298, 2002.
  170. Hoyer, J. D.; Weinhold, J.; Mailhot, E.; Alter, D.; McCormick,
  D. J.; Snow, K.; Kubik, K. S.; Holmes, M. W.; Fairbanks, V. F.: Three
  new hemoglobin variants with abnormal oxygen affinity: Hb Saratoga
  Springs [alpha-40(C5)lys-to-asn (alpha-1)], Hb Santa Clara [beta-97(FG4)his-to-a  sn],
  and Hb Sparta [beta-103(G5)phe-to-val]. Hemoglobin 27: 235-241,
  171. Huisman, T. H. J.; Adams, H. R.; Wilson, J. B.; Efremov, G. D.;
  Reynolds, C. A.; Wrightstone, R. N.: Hemoglobin G Georgia or alpha
  95 leu (G-2) beta 2. Biochim. Biophys. Acta 200: 578-580, 1970.
  172. Huisman, T. H. J.; Carver, M. F. H.; Efremov, G. D.: A syllabus
  of human hemoglobin variants (1996). Augusta, Ga.: The Sickle Cell
  Anemia Foundation , 1996.
  173. Huisman, T. H. J.; Miller, A.: Hb Grady and alpha-thalassemia:
  a contribution to the problem of the number of Hb (alpha) structural
  loci in man. Am. J. Hum. Genet. 28: 363-369, 1976.
  174. Huisman, T. H. J.; Sydenstricker, V. P.: Difference in gross
  structure of two electrophoretically identical 'minor' hemoglobin
  components. Nature 193: 489-491, 1962.
  175. Huisman, T. H. J.; Wilson, J. B.; Gravely, M.; Hubbard, M.:
  Hemoglobin Grady: the first example of a variant with elongated chains
  due to an insertion of residues. Proc. Nat. Acad. Sci. 71: 3270-3273,
  176. Huntsman, R. G.; Hall, M.; Lehmann, H.; Sukumaran, P. K.: A
  second and a third abnormal haemoglobin in Norfolk. Hb G-Norfolk and
  Hb D-Norfolk. Brit. Med. J. 1: 720-722, 1963.
  177. Hyde, R. D.; Kinderlerer, J. L.; Lehmann, H.; Hall, M.: Hb J
  Rajappen. Biochim. Biophys. Acta 243: 515-519, 1971.
  178. Imai, K.; Tsuneshige, A.; Harano, T.; Harano, K.: Structure-function
  relationships in hemoglobin Kariya, lys40(C5)alpha-to-glu, with high
  oxygen affinity: functional role of the salt bridge between lys40alpha
  and the beta-chain COOH terminus. J. Biol. Chem. 264: 11174-11180,
  179. Imamura, T.: Hemoglobin Kagoshima: an example of hemoglobin
  Norfolk in a Japanese family. Am. J. Hum. Genet. 18: 584-593, 1966.
  180. Itano, H. A.; Robinson, E. A.: Genetic control of the alpha-
  and beta-chains of hemoglobin. Proc. Nat. Acad. Sci. 46: 1492-1501,
  181. Itano, H. A.; Robinson, E. A.: Formation of normal and double
  abnormal haemoglobins by recombination of haemoglobin I with S and
  C. Nature 183: 1799-1800, 1959.
  182. Iuchi, I.; Hidaka, K.; Ueda, S.; Shibata, S.; Kusumoto, T.:
  Hemoglobin G Taichung (alpha 74 asp-to-his) heterozygotes found in
  two Japanese families. Hemoglobin 2: 79-84, 1978.
  183. Iuchi, I.; Shimasaki, S.; Hidaka, K.; Harano, T.; Ueda, S.; Shibata,
  S.; Mizushima, J.; Kubo, N.: Hemoglobin Mizushi (alpha75 EF4 asp-to-gly):
  a new hemoglobin variant observed in a Japanese family. Hemoglobin 4:
  209-214, 1980.
  184. Jarman, A. P.; Higgs, D. R.: A new hypervariable marker for
  the human alpha-globin gene cluster. Am. J. Hum. Genet. 43: 249-256,
  185. Jen, P. C.; Liu, Y.: Hemoglobin Guangzhou, alpha64 (E3) asp-to-gly,
  a new abnormal hemoglobin found in Guangzhou, China. Hemoglobin 11:
  25-30, 1987.
  186. Jones, R. T.; Brimhall, B.; Lisker, R.: Chemical characterization
  of hemoglobin Mexico and hemoglobin Chiapas. Biochim. Biophys. Acta 154:
  488-495, 1968.
  187. Jones, R. T.; Koler, R. D.; Lisker, R.: The chemical structure
  of hemoglobin Mexico determined by automatic peptide chromatography
  and subunit hybridization. Clin. Res. 11: 105, 1963.
  188. Jue, D. L.; Johnson, M. H.; Patchen, L. C.; Moo-Penn, W. F.:
  Hemoglobin Dunn: alpha6 aspartic acid-to-asparagine. Hemoglobin 3:
  137-143, 1979.
  189. Juricic, D.; Efremov, G. D.; Wilson, J. B.; Huisman, T. H. J.
  : Hb Savaria or alpha49(CE7)ser-to-arg in a Yugoslavian family. Hemoglobin 9:
  631-633, 1985.
  190. Kamuzora, H.; Lehmann, H.: A new hemoglobin variant. Hemoglobin
  J (Birmingham): alpha 120 (H3) ala-to-glu. Ann. Clin. Biochem. 11:
  53-55, 1974.
  191. Kan, Y. W.; Dozy, A. M.; Stamatoyannopoulos, G.; Hadjiminas,
  M. G.; Zachariadis, Z.; Furbetta, M.; Cao, A.: Molecular basis of
  hemoglobin-H disease in the Mediterranean population. Blood 54:
  1434-1438, 1979.
  192. Kan, Y. W.; Golbus, M. S.; Dozy, A. M.: Prenatal diagnosis of
  alpha-thalassemia: clinical application of molecular hybridization. New
  Eng. J. Med. 295: 1165-1167, 1976.
  193. Kazanetz, E. G.; Leonova, J. Y.; Wilson, J. B.; McMillan, S.
  K.; Walbrecht, M.; de Pablos Gallego, J. M.; Huisman, T. H. J.: Hb
  Anamosa or alpha(2)-111(G18)ala--val-beta2 (alpha2 mutation) and Hb
  Mulhacen or alpha(2)-123(H6)ala--ser-beta2 (alpha1 mutation) are two
  silent, stable variants detected by sequencing of amplified DNA. Hemoglobin 19:
  1-6, 1995.
  194. Kendall, A. G.; Barr, R. D.; Lang, A.; Lehmann, H.: Hemoglobin
  J (Nyanza) alpha 21 (B2) ala-to-asp. Biochim. Biophys. Acta 310:
  357-359, 1973.
  195. Kielman, M. F.; Smits, R.; Devi, T. S.; Fodde, R.; Bernini, L.
  F.: Homology of a 130-kb region enclosing the alpha-globin gene cluster,
  the alpha-locus controlling region, and two non-globin genes in human
  and mouse. Mammalian Genome 4: 314-323, 1993.
  196. Kilinc, Y.; Kumi, M.; Gurgey, A.; Altay, C.; Webber, B. B.; Wilson,
  J. B.; Kutlar, A.; Huisman, T. H. J.: Hemoglobin O-Padova or alpha30(B11)glu-to-  lys
  observed in members of a Turkish family. Hemoglobin 9: 621-625,
  197. Kister, J.; Kiger, L.; Francina, A.; Hanny, P.; Szymanowicz,
  A.; Blouquit, Y.; Prome, D.; Galacteros, F.; Delaunay, J.; Wajcman,
  H.: Hemoglobin Roanne (alpha94(G1)asp-to-glu): a variant of the alpha-1
  beta-2 interface with an unexpected high oxygen affinity. Biochim.
  Biophys. Acta 1246: 34-38, 1995.
  198. Kleihauer, E. F.; Reynolds, C. A.; Dozy, A. M.; Wilson, J. B.;
  Moores, R. R.; Berenson, M. P.; Wright, C. S.; Huisman, T. H. J.:
  Hemoglobin Bibba or alpha(2)136 pro beta(2), an unstable alpha chain
  abnormal hemoglobin. Biochim. Biophys. Acta 154: 220-221, 1968.
  199. Knuth, A.; Pribilla, W.; Marti, H. R.; Winterhalter, K. H.:
  Hemoglobin Moabit: alpha 86 (F7) leu-to-arg: a new unstable abnormal
  hemoglobin. Acta Haemat. 61: 121-124, 1979.
  200. Koeffler, H. P.; Sparkes, R. S.; Stang, H.; Mohandas, T.: Regional
  assignment of genes for human alpha-globin and phosphoglycollate phosphatase
  to the short arm of chromosome 16. Proc. Nat. Acad. Sci. 78: 7015-7018,
  201. Kohne, E.; Krause, M.; Leupold, D.; Kleihauer, E.: Hemoglobin
  F Koelliker (alpha-2-minus 141 (HC3) arg-to-gamma-2): a modification
  of fetal hemoglobin. Hemoglobin 1: 257-266, 1977.
  202. Kraus, A. P.; Miyaji, T.; Iuchi, I.; Kraus, L. M.: Hemoglobin
  Memphis, a new variant of sickle cell anemia. Trans. Assoc. Am. Phys. 80:
  297-304, 1967.
  203. Kraus, A. P.; Miyaji, T.; Iuchi, I.; Kraus, L. M.: Hemoglobin
  Memphis: a new variety of sickle cell anemia with symptoms due to
  an alpha-chain variant hemoglobin (alpha23 glu). J. Lab. Clin. Med. 66:
  886-887, 1965.
  204. Labie, D.; Rosa, J.: Sur une nouvelle hemoglobine anormale:
  l'hemoglobine J (alpha-54 glutamine a glutamique). Nouv. Rev. Franc.
  Hemat. 6: 426-430, 1966.
  205. Labossiere, A.; Vella, F.: Hemoglobin I in a white family in
  Saskatoon. Clin. Biochem. 4: 104-113, 1971.
  206. Lacan, P.; Aubry, M.; Couprie, N.; Francina, A.: Two new alpha
  chain variants: Hb Die (alpha-93(FG5)val-to-ala (alpha-1)) and Hb
  Beziers [alpha-99(G6)lys-to-asn (alpha-1)]. Hemoglobin 28: 59-63,
  207. Lacan, P.; Francina, A.; Souillet, G.; Aubry, M.; Couprie, N.;
  Dementhon, L.; Becchi, M.: Two new alpha chain variants: Hb Boghe
  (alpha-58(E7)his-to-gln, alpha-2), a variant on the distal histidine,
  and Hb Charolles (alpha-103(G10)his-to-tyr, alpha-1). Hemoglobin 23:
  345-352, 1999.
  208. Lacombe, C.; Soria, J.; Arous, N.; Blouquit, Y.; Bardakdjian,
  J.; Riou, J.; Galacteros, F.: A new case of Hb Dagestan (alpha60(E9)
  lys-to-glu). Hemoglobin 11: 39-41, 1987.
  209. Lambridis, A. J.; Ramsay, M.; Jenkins, T.: The haematological
  puzzle of Hb J Cape Town is partly solved. Brit. J. Haemat. 63:
  363-367, 1986.
  210. Langdown, J. V.; Davidson, R. J. L.; Williamson, D.: A new alpha
  chain variant, Hb Turriff (alpha-99(G6)lys-to-glu): the interference
  of abnormal hemoglobins in Hb A(1c) determination. Hemoglobin 16:
  11-17, 1992.
  211. Leder, A.; Miller, H. I.; Hamer, D. H.; Seidman, J. G.; Norman,
  B.; Sullivan, M.; Leder, P.: Comparison of cloned mouse alpha- and
  beta-globin genes: conservation of intervening sequence locations
  and extragenic homology. Proc. Nat. Acad. Sci. 75: 6187-6191, 1978.
  212. Leder, A.; Swan, D.; Ruddle, F.; D'Eustachio, P. D.; Leder, P.
  : Dispersion of alpha-like globin genes of the mouse to three different
  chromosomes. Nature 293: 196-200, 1981.
  213. Leder, A.; Wiener, E.; Lee, M. J.; Wickramasinghe, S. N.; Leder,
  P.: A normal beta-globin allele as a modifier gene ameliorating the
  severity of alpha-thalassemia in mice. Proc. Nat. Acad. Sci. 96:
  6291-6295, 1999.
  214. Lee-Potter, J. P.; Deacon-Smith, R. A.; Lehmann, H.; Robb, L.
  : Haemoglobin Ferndown (alpha6 aspartic acid-to-valine). FEBS Lett. 126:
  117-119, 1981.
  215. Lehmann, H.: Haemoglobins and haemoglobinopathies.In: Lehmann,
  H.; Betke, K.: Haemoglobin-Colloquium.  Stuttgart: Georg Thieme
  Verlag (pub.)  1962. Pp. 1-14.
  216. Lehmann, H.; Carrell, R. W.: Nomenclature of the alpha-thalassaemias. Lance  t 323:
  552-553, 1984. Note: Originally Volume I.
  217. Lehmann, H.; Carrell, R. W.: Variations in the structure of
  human haemoglobins: with particular reference to the unstable haemoglobins. Brit  .
  Med. Bull. 25: 14-23, 1969.
  218. Li, H.; Zhao, X.; Qin, F.; Li, H.; Li, L.; He, X.; Chang, X.;
  Li, Z.; Liang, K.; Xing, F.; Chang, W.; Wong, R.; Yang, I.; Li, F.;
  Zhang, T.; Tian, R.; Webber, B. B.; Wilson, J. B.; Huisman, T. H.
  J.: Abnormal hemoglobins in the Silk Road region of China. Hum.
  Genet. 86: 231-235, 1990.
  219. Li, H. J.; Liu, D. X.; Li, L.; Cha, S. C.; Wilson, J. B.; Webber,
  B. B.; Huisman, T. H. J.: Hb Guangzhou-Hangzhou or alpha64(E13)asp-to-gly
  observed in members of a Chinese family living in Xinjiang. Hemoglobin 14:
  441-444, 1990.
  220. Liang, C.; Tao, H.; Lo, H.; Huang, S.; Li, R.; Wang, B.: Hemoglobin
  Shuangfeng (alpha27 (B8) glu-to-lys): a new unstable hemoglobin variant. Hemoglo  bin 5:
  691-700, 1981.
  221. Liang, C.-C.; Chen, S.; Yang, K.; Jia, P.; Ma, Y.; Li, T.; Ni,
  X.; Wang, X.; Deng, Q.; Yao, S.: Hemoglobin Beijing (alpha16 (A14)
  lys-to-asn): a new fast-moving hemoglobin variant. Hemoglobin 6:
  629-633, 1982.
  222. Liang, C.-C.; Chen, S.-S.; Jia, P.-C.; Wang, L.-F.; Luo, H.-Y.;
  Liu, G.-Y.; Liang, S.; Lung, G.-F.; Yu, C.-M.; Zuang, L.-Z.; Liant,
  B.-L.; Tang, Z.-N.: Hemoglobin Duan (alpha75(EF4) asp-to-ala), a
  new variant found in China. Hemoglobin 5: 481-486, 1981.
  223. Liang, S.; Tang, Z.; Su, C.; Lung, Q.; Liang, R.; Fei, Y. J.;
  Kutlar, F.; Wilson, J. B.; Webber, B. B.; Hu, H.; Huisman, T. H. J.
  : Hb Duan (alpha-75(EF4)asp-to-ala), Hb Westmead (alpha-122(H5)his-to-gln),
  and alpha-thalassemia-2 (-4.2 kb deletion) in a Chinese family. Hemoglobin 12:
  13-21, 1988.
  224. Lie-Injo, L. E.; Dozy, A. M.; Kan, Y. W.; Lopes, M.; Todd, D.
  : The alpha-globin gene adjacent to the gene for Hb Q (alpha 74 asp-to-his)
  is deleted, but not that adjacent to the gene for Hb G (alpha 30 glu-to-gln);
  three-fourths of the alpha-globin genes are deleted in Hb Q-alpha-thalassemia. B  lood 54:
  1407-1416, 1979.
  225. Lie-Injo, L. E.; Pillay, R. P.; Thuraisingham, V.: Further cases
  of haemoglobin Q-H disease (Hb Q-alpha thalassemia). Blood 28: 830-839,
  226. Lie-Injo, L. E.; Sadono, (NI): Haemoglobin O (Buginese X) in
  Sulawesi. Brit. Med. J. 1: 1461-1462, 1958.
  227. Liebhaber, S. A.; Cash, F. E.: Locus assignment of alpha-globin
  structural mutations by hybrid-selected translation. J. Clin. Invest. 75:
  64-70, 1985.
  228. Liebhaber, S. A.; Cash, F. E.; Ballas, S. K.: Human alpha-globin
  gene expression: the dominant role of the alpha(2)-locus in mRNA and
  protein synthesis. J. Biol. Chem. 261: 15327-15333, 1986.
  229. Liebhaber, S. A.; Goossens, M.; Kan, Y. W.: Homology and concerted
  evolution at the alpha-1 and alpha-2 loci of human alpha-globin. Nature 290:
  26-29, 1981.
  230. Liebhaber, S. A.; Goossens, M. J.; Kan, Y. W.: Cloning and complete
  nucleotide sequence of human 5(prime)-alpha-globin gene. Proc. Nat.
  Acad. Sci. 77: 7054-7058, 1980.
  231. Liebhaber, S. A.; Griese, E.-U.; Weiss, I.; Cash, F. E.; Ayyub,
  H.; Higgs, D. R.; Horst, J.: Inactivation of human alpha-globin gene
  expression by a de novo deletion located upstream of the alpha-globin
  gene cluster. Proc. Nat. Acad. Sci. 87: 9431-9435, 1990.
  232. Liebhaber, S. A.; Rappaport, E. F.; Cash, F. E.; Ballas, S. K.;
  Schwartz, E.; Surrey, S.: Hemoglobin I mutation encoded at both alpha-globin
  loci on the same chromosome: concerted evolution in the human genome. Science 22  6:
  1449-1451, 1984.
  233. Liu, G.-Y.; Zhang, G.-X.; Nie, S.-Y.; Luo, H.-Y.; Teng, Y.-Q.;
  Liu, S.-P.; Song, M.; Son, L.; Chen, S.-S.; Jia, P.-C.; Liang, C.-C.
  : A case of hemoglobin Iwate (alpha87(F8)his-to-arg) in China. Hemoglobin 7:
  279-282, 1983.
  234. Lorkin, P. A.; Charlesworth, D.; Lehmann, H.; Rahbar, S.; Tuchinda,
  S.; Lie-Injo, L. E.: Two haemoglobins Q, alpha 74 (EF3) and alpha
  75 (EF4) aspartic acid to histidine. Brit. J. Haemat. 19: 117-125,
  235. Lorkin, P. A.; Huntsman, R. G.; Ager, J. A. M.; Lehmann, H.;
  Vella, F.; Dakbre, P. D.: Hemoglobin G (Norfolk): alpha 85 (F6) asp-to-asn. Bioc  him.
  Biophys. Acta 379: 22-27, 1975.
  236. Lu, Y.-Q.; Liu, J.-F.; Huang, C.-H.; Huang, P.-Y.; Hu, H.-L.;
  Peng, X.-H.; Chen, S.-S.; Jia, P.-C.; Yang, K.-G.; Liang, C.-C.; Zuo,
  C.-R.: Hemoglobin Lille (alpha74 (EF3) asp-to-ala): the first instance
  in China. Hemoglobin 8: 523-527, 1984.
  237. Maggio, A.; Massa, A.; Giampaolo, A.; Mavilio, F.; Tentori, L.
  : Occurrence of Hb M Iwate (alpha 87 his-to-tyr) in an Italian carrier. Hemoglob  in 5:
  205-208, 1981.
  238. Malcorra-Azpiazu, J. J.; Balda-Aguirre, M. I.; Diaz-Chico, J.
  C.; Kutlar, F.; Kutlar, A.; Wilson, J. B.; Hu, H.; Huisman, T. H.
  J.: Hb Le Lamentin or alpha20 (B1) his-to-gln found in a Spanish
  family. Hemoglobin 12: 201-205, 1988.
  239. Mamalaki, A.; Horanyi, M.; Szelenyi, J.; Moschonas, N. K.: Locus
  assignment of human alpha-globin structural mutants by selective enzymatic
  amplification of alpha-1 and alpha-2-globin cDNAs. Hum. Genet. 85:
  509-512, 1990.
  240. Marengo-Rowe, A. J.; Beale, D.; Lehmann, H.: New human hemoglobin
  variant from southern Arabia: G-Audhali (alpha-23(b4) glutamic acid-valine)
  and the variability of B4 in human haemoglobin. Nature 219: 1164-1166,
  241. Marinucci, M.; Mavilio, F.; Massa, A.; Gabbianelli, M.; Fontanarosa,
  P. P.; Camagna, A.; Ignesti, C.; Tentori, L.: A new abnormal human
  hemoglobin: Hb Prato (alpha31 arg-to-ser). Biochim. Biophys. Acta 578:
  534-540, 1979.
  242. Marinucci, M.; Mavilio, F.; Tentori, L.; Bestetti, A.: Occurrence
  of Hb J Paris in an Italian family and recombination studies on the
  free abnormal alpha-chain. Hemoglobin 3: 465-469, 1979.
  243. Marinucci, M.; Mavilio, F.; Tentori, L.; D'Erasmo, F.; Colapietro,
  A.; De Stasio, G.; Di Fonzo, S.: A new human hemoglobin variant:
  Hb Bari (alpha 45(CD3) his-to-gln). Biochim. Biophys. Acta 622:
  315-319, 1980.
  244. Marti, H. R.; Beale, D.; Lehmann, H.: Haemoglobin Koelliker:
  a new acquired haemoglobin appearing after severe haemolysis: alpha-2
  (minus 141 arg) beta-2. Acta Haemat. 37: 174-180, 1967.
  245. Martin, G.; Villegas, A.; Calero, F.; del Palacio, S.; Lopez,
  J. C.; Lopez, M.; Espinos, D.: Hb O Padova in a Spanish family. Acta
  Haemat. 84: 1-4, 1990.
  246. Martinez, G.; Lima, F.; Residenti, C.; Colombo, B.: Hb J Camaguey
  alpha 141 (HC3) arg-to-gly: a new abnormal human hemoglobin. Hemoglobin 2:
  47-52, 1978.
  247. Masala, B.: Hemoglobinopathies in Sardinia. Hemoglobin 16:
  331-351, 1992.
  248. Masala, B.; Manca, L.; Stangoni, A.; Cuccuru, G. B.; Wilson,
  J. B.; Webber, B. B.; Kutlar, A.; Huisman, T. H. J.: Hb Sassari or
  alpha126 (H9) asp-to-his observed in a family from northern Sardinia. Hemoglobin   11:
  373-378, 1987.
  249. Mavilio, F.; Marinucci, M.; Tentori, L.; Fontanarosa, P. P.;
  Rossi, U.; Biagiotti, S.: Hemoglobin Legnano (alpha 141 (HC3) arg-to-leu):
  a new abnormal human hemoglobin with high oxygen affinity. Hemoglobin 2:
  249-259, 1978.
  250. Mayne, E. E.; Elder, G. E.; Lappin, T. R. J.; Ferguson, L. A.
  K.: Hb M Iwate (alpha87 his-to-tyr): de novo mutation in an Irish
  family. Hemoglobin 10: 205-208, 1986.
  251. McDonald, M. J.; Michalski, L. A.; Turci, S. M.; Guillette, R.
  A.; Jue, D. L.; Johnson, M. H.; Moo-Penn, W. F.: Structural, functional,
  and subunit assembly properties of Hb Attleboro [alpha138(H21)ser-to-pro],
  a variant possessing a site mutation at a critical C-terminal residue. Biochemis  try 29:
  173-178, 1990.
  252. Meloni, T.; Pilo, G.; Camardella, L.; Cancedda, F.; Lania, A.;
  Pepe, G.; Luzzatto, L.: Coexistence of three hemoglobins with different
  alpha-chains in two unrelated children (with family studies indicating
  polymorphism in the number of alpha-globin genes in the Sardinian
  population). Blood 55: 1025-1032, 1980.
  253. Meyering, C. A.; Israels, A. L.; Sebens, T.; Huisman, T. H. J.
  : Studies on the heterogeneity of hemoglobin. II. The heterogeneity
  of different human hemoglobin types in carboxymethyl cellulose and
  in amberlite irc-50 chromatography: quantitative aspects. Clin. Chim.
  Acta 5: 208-222, 1960.
  254. Miyaji, T.; Iuchi, I.; Yamamoto, K.; Ohba, Y.; Shibata, S.:
  Amino acid substitution of hemoglobin Ube 2 (alpha 68 asp): an example
  of successful application of partial hydrolysis of peptide with 5
  percent acetic acid. Clin. Chim. Acta 16: 347-352, 1967.
  255. Miyaji, T.; Ueda, S.; Shibata, S.; Tamura, A.; Sasaki, H.: Further
  studies on the fingerprint of Hb M (Iwate). Acta Haemat. Jpn. 25:
  169-175, 1962.
  256. Miyashita, H.; Hashimoto, K.; Mohri, H.; Ohokubo, T.; Harano,
  T.; Harano, K.; Imai, K.: Hb Kanagawa (alpha-40(C5)lys-to-met): a
  new alpha chain variant with an increased oxygen affinity. Hemoglobin 16:
  1-10, 1992.
  257. Moi, P.; Cash, F. E.; Liebhaber, S. A.; Cao, A.; Pirastu, M.
  : An initiation codon mutation (AUG-to-GUG) of the human alpha-1-globin
  gene: structural characterization and evidence for a mild thalassemic
  phenotype. J. Clin. Invest. 80: 1416-1421, 1987.
  258. Moo-Penn, W. F.; Baine, R. M.; Jue, D. L.; Johnson, M. H.; McGuffey,
  J. E.; Benson, J. M.: Hemoglobin Evanston: alpha14(A12) trp-to-arg--a
  variant hemoglobin associated with alpha-thalassemia-2. Biochim.
  Biophys. Acta 747: 65-70, 1983.
  259. Moo-Penn, W. F.; Bechtel, K. C.; Johnson, M. H.; Jue, D. L.;
  Holland, S.; Huff, C.; Schmidt, R. M.: Hemoglobin (Jackson) alpha
  127 (H10) lys-to-asn. Am. J. Clin. Path. 66: 453-456, 1976.
  260. Moo-Penn, W. F.; Jue, D. L.; Baine, R. M.: Hemoglobin J Rovigo
  (alpha 53 ala-to-asp) in association with beta thalassemia. Hemoglobin 2:
  443-445, 1978.
  261. Moo-Penn, W. F.; Jue, D. L.; Johnson, M. H.; McGuffey, J. E.;
  Simpkins, H.; Katz, J.: Hemoglobin Queens: alpha34(B15) leu-to-arg
  structural and functional properties and its association with Hb E. Am.
  J. Hemat. 13: 323-327, 1982.
  262. Moo-Penn, W. F.; Jue, D. L.; Johnson, M. H.; Therrell, B. L.
  : Hemoglobin Swan River (alpha6(A4)asp-to-gly). Hemoglobin 11: 61-62,
  263. Moo-Penn, W. F.; Swan, D. C.; Hine, T. K.; Baine, R. M.; Jue,
  D. L.; Benson, J. M.; Johnson, M. H.; Virshup, D. M.; Zinkham, W.
  H.: Hb Catonsville (glutamic acid inserted between pro-37 (C2) alpha
  and thr-38 (C3) alpha). J. Biol. Chem. 264: 21454-21457, 1989.
  264. Moo-Penn, W. F.; Therrell, B. L., Jr.; Jue, D. L.; Johnson, M.
  H.: Hemoglobin Cubujuqui (alpha141 arg-to-ser): functional consequences
  of the alteration of the C-terminus of the alpha chain of hemoglobin. Hemoglobin   5:
  715-724, 1981.
  265. Murayama, M.: Chemical difference between normal human haemoglobin
  and haemoglobin-I. Nature 196: 276-277, 1962.
  266. Musumeci, S.; Schiliro, G.; Pizzarelli, G.; Fischer, A.; Russo,
  G.: Thalassemia of intermediate severity resulting from the interaction
  between alpha- and beta-thalassemia. J. Med. Genet. 15: 448-451,
  267. Nakashima, H.; Fujiyama, A.; Kagiyama, S.; Imamura, T.: Genetic
  polymorphisms of gene conversion within the duplicated human alpha-globin
  loci. Hum. Genet. 84: 568-570, 1990.
  268. Nakatsuji, T.; Abraham, B. L.; Lam, H.; Wilson, J. B.; Huisman,
  T. H. J.: Hb Winnipeg or alpha75 (EF4) asp-to-tyr in a large Caucasian
  family living in Georgia, USA. Hemoglobin 7: 105-110, 1983.
  269. Nakatsuji, T.; Miwa, S.; Ohba, Y.; Miyaji, T.; Matsumoto, N.;
  Matsuoka, I.: Hemoglobin Tottori (alpha59 (E8) glycine-to-valine):
  a new unstable hemoglobin. Hemoglobin 5: 427-439, 1981.
  270. Nakatsuji, T.; Wilson, J. B.; Huisman, T. H. J.: Hb Cordele
  alpha47 (CE5) asp-to-ala, a mildly unstable variant observed in black
  twins. Hemoglobin 8: 37-46, 1984.
  271. Ngiwsara, L.; Srisomsap, C.; Winichagoon, P.; Fucharoen, S.;
  Svasti, J.: Two cases of compound heterozygosity for Hb Hekinan [alpha27(B8)glu-  to-asp
  (alpha-1)] and alpha-thalassemia in Thailand. Hemoglobin 28: 145-150,
  272. Niazi, G. A.; Efremov, G. D.; Nikolov, N.; Hunter, E., Jr.; Huisman,
  T. H. J.: Hemoglobin Strumica or alpha 112(G19) his-to-arg. (with
  an addendum: hemoglobin J-Paris-I, alpha 12(A10) ala-to-asp, in the
  same population). Biochim. Biophys. Acta 412: 181-186, 1975.
  273. North, M. L.; Hassan, W.; Thillet, J.; Schwartz, M.; Taubert,
  C.; Ritter, J.; Gandar, R.; Rosa, J.: Etude clinique et biologique
  d'un cas d'hemoglobine hybride S-Stanleyville II (alpha 78 asn-to-lys,
  beta 6 glu-to-val). Nouv. Rev. Franc. Hemat. 22: 235-241, 1980.
  274. Nozari, G.; Rahbar, S.; Darbre, P.; Lehmann, H.: Hemoglobin
  Setif (alpha 94 (G1) asp-to-tyr) in Iran--a report of 9 cases. Hemoglobin 1:
  289-291, 1977.
  275. O'Brien, C.; Gray, M. J.; Jacobs, A. S.: A survey of cord bloods
  for abnormal hemoglobin, with further observations on hemoglobin I
  (Burlington). Am. J. Obstet. Gynec. 88: 816-822, 1964.
  276. Ohba, Y.; Fujisawa, K.; Imai, K.; Leowattana, W.; Tani, Y.; Ami,
  M.; Miyaji, T.: A new alpha chain variant Hb Tonosho [alpha110(G17)ala-to-thr]:
  subunit dissociation during cation exchange chromatography for Hb
  A1c assay. Hemoglobin 14: 413-422, 1990.
  277. Ohba, Y.; Hattori, Y.; Matsuoka, M.; Miyaji, T.; Fuyuno, K.:
  Hb Kokura (alpha 47 (CE5) asp-to-gly): a slightly unstable variant. Hemoglobin 6  :
  69-74, 1982.
  278. Ohba, Y.; Imai, K.; Uenaka, R.; Ami, M.; Fujisawa, K.; Itoh,
  K.; Hirakawa, K.; Miyaji, T.: Hb Miyano or alpha41(C6)thr-to-ser:
  a new high oxygen affinity alpha chain variant found in an erythremic
  blood donor. Hemoglobin 13: 637-647, 1989.
  279. Ohba, Y.; Miyaji, T.; Matsuoka, M.; Morito, M.; Iuchi, I.: Characterization  
  of Hb Ube-4: alpha 116 (GH4) glu-to-ala. Hemoglobin 2: 181-186,
  280. Ohba, Y.; Miyaji, T.; Matsuoka, M.; Takeda, I.; Fukuba, Y.; Shibata,
  S.; Ohkura, K.: Hemoglobin Matsue-Oki: alpha 75 (EF4) aspartic acid-to-asparagin  e. Hemoglobin 1:
  383-388, 1977.
  281. Ohba, Y.; Miyaji, T.; Matsuoka, M.; Yokoyama, M.: Further studies
  on hemoglobin Hirosaki: demonstration of its presence at low concentration. Hemo  globin 2:
  281-286, 1978.
  282. Ohba, Y.; Miyaji, T.; Matsuoka, M.; Yokoyama, M.; Numakura, H.;
  Nagata, K.; Takebe, Y.; Izumi, Y.; Shibata, S.: Hemoglobin Hirosaki
  (alpha 43(CE1) phe-to-leu), a new unstable variant. Biochim. Biophys.
  Acta 405: 155-160, 1975.
  283. Ohba, Y.; Yamamoto, K.; Kawata, R.; Miyaji, T.: Hyperunstable
  hemoglobin Toyama, alpha136 (H19) leu to arg detection and identification
  by in vitro biosynthesis with radioactive amino acids. Hemoglobin 11:
  539-556, 1987.
  284. Ohba, Y.; Yoshinaka, H.; Hattori, Y.; Matsuoka, M.; Miyaji, T.
  : Hemoglobin J Habana found in a cord blood of a Japanese. Hemoglobin 7:
  327-329, 1983.
  285. Ojwang, P. J.; Ogada, T.; Webber, B. B.; Wilson, J. B.; Huisman,
  T. H. J.: Hb Savaria or alpha(2)49(CE7) ser-to-arg in an indigenous
  female from Kenya. Hemoglobin 9: 197-200, 1985.
  286. Ooya, I.; Kawamura, K.; Seita, M.; Hanada, M.; Hitsumoto, A.
  : Hemoglobin Kokura which was discovered in Kokura. (Abstract) 23rd
  Gen. Meeting Japan. Soc. Hemat., Kyoto , 1961.
  287. Orkin, S. H.: The duplicated human alpha globin lie close together
  in cellular DNA. Proc. Nat. Acad. Sci. 75: 5950-5954, 1978.
  288. Orringer, E. P.; Wilson, J. B.; Huisman, T. H. J.: Hemoglobin
  Chapel Hill or alpha 74 asp-to-gly. FEBS Lett. 65: 297-300, 1976.
  289. Ostertag, W.; Von Ehrenstein, G.; Charache, S.: Duplicated alpha-chain
  genes in Hopkins-2 haemoglobin of man and evidence for unequal crossing
  over between them. Nature N.B. 237: 90-94, 1972.
  290. Overly, W. L.; Rosenberg, A.; Harris, J. W.: Hemoglobin M (Reserve):
  studies on identification and characterization. J. Lab. Clin. Med. 69:
  62-87, 1967.
  291. Paglietti, E.; Barella, S.; Satta, S.; Perra, C.; Cao, A.; Galanello,
  R.: Hb Sassari [alpha-126(H9)asp-to-his] results from a GAC-to-CAC
  mutation in the alpha-1-globin gene. Hemoglobin 22: 65-67, 1998.
  292. Phillips, J. A., III; Scott, A. F.; Smith, K. D.; Young, K. E.;
  Lightbody, K. L.; Jiji, R. M.; Kazazian, H. H., Jr.: A molecular
  basis for hemoglobin-H diseases in American blacks. Blood 54: 1439-1445,
  293. Phillips, J. A., III; Vik, T. A.; Scott, A. F.; Young, K. E.;
  Kazazian, H. H., Jr.; Smith, K. D.; Fairbanks, V. F.; Koenig, H. M.
  : Unequal crossing-over: a common basis of single alpha-globin genes
  in Asians and American blacks with hemoglobin-H disease. Blood 55:
  1066-1069, 1980.
  294. Pik, C.; Tonz, O.: Nature of haemoglobin M (Oldenburg). Nature 210:
  1182, 1966.
  295. Pobedimskaya, D. D.; Molchanova, T. P.; Huisman, T. H. J.: Hb
  Ramona or alpha(2)24(B5)tyr-to-cys. Hemoglobin 18: 365-366, 1994.
  296. Pootrakul, S.; Boonyarat, D.; Kematorn, B.; Suanpan, S.; Wasi,
  P.: Hemoglobin Thailand (alpha 56 (E5) lys-to-thr): a new abnormal
  human hemoglobin. Hemoglobin 1: 781-798, 1977.
  297. Pootrakul, S.; Dixon, G. H.: Hemoglobin Mahidol: a new hemoglobin
  alpha-chain mutant. Canad. J. Biochem. 48: 1066-1078, 1970.
  298. Pootrakul, S.; Kematorn, B.; Na-Nakorn, S.; Suanpan, S.: A new
  haemoglobin variant. Haemoglobin Anantharaj (alpha 11 (A9) lysine-to-glutamic
  acid). Biochim. Biophys. Acta 405: 161-166, 1975.
  299. Pootrakul, S.; Srichiyanont, S.; Wasi, P.; Suanpan, S.: Hemoglobin
  Siam (alpha 15 arg): a new alpha-chain variant. Humangenetik 25:
  199-204, 1974.
  300. Popp, R. A.; Lalley, P. A.; Whitney, J. B., III; Anderson, W.
  F.: Mouse alpha-like globin genes and alpha-globin-like pseudogenes
  are not syntenic. Proc. Nat. Acad. Sci. 78: 6362-6366, 1981.
  301. Poyart, C.; Krishnamoorthy, R.; Bursaux, E.; Gacon, G.; Labie,
  D.: Structural and functional studies of haemoglobin Suresnes or
  alpha 141 (HC3) arg-to-his, a new high oxygen affinity mutant. FEBS
  Lett. 69: 103-107, 1976.
  302. Prato, V.; Gallo, E.; Ricco, G.; Mazza, U.; Bianco, G.; Lehmann,
  H.: Haemolytic anaemia due to haemoglobin Torino. Brit. J. Haemat. 19:
  105-115, 1970.
  303. Prehu, C.; Bost, M.; Barro, C.; Prome, D.; Riou, J.; Godart,
  C.; Kister, J.; Galacteros, F.; Wajcman, H.: Hb Roubaix (alpha-55(E4)val-to-leu)  :
  a new neutral hemoglobin variant involving the alpha-1 gene. Hemoglobin 23:
  361-365, 1999.
  304. Prehu, C.; Hanichi, A.; Yapo, A. P.; Claparols, C.; Prome, D.;
  Riou, J.; Wajcman, H.: Hb Douala [alpha-3(A1)ser-phe]: a new alpha-1
  gene mutation in a Cameroonian woman heterozygous for Hb S and a 3.7
  kb deletional alpha-thalassemia. Hemoglobin 25: 323-329, 2001.
  305. Priest, J. R.; Watterson, J.; Jones, R. T.; Faassen, A. E.; Hedlund,
  B. E.: Mutant fetal hemoglobin causing cyanosis in a newborn. Pediat. 83:
  734-736, 1989.
  306. Proudfoot, N. J.; Maniatis, T.: The structure of a human alpha-globin
  pseudogene and its relationship to alpha-globin gene duplication. Cell 21:
  537-544, 1980.
  307. Pulsinelli, P. D.; Perutz, M. F.; Nagel, R. L.: Structure of
  hemoglobin M (Boston), a variant with a five-coordinated ferric heme. Proc.
  Nat. Acad. Sci. 70: 3870-3874, 1973.
  308. Qualtieri, A.; De Marco, E. V.; Crescibene, L.; Andreoli, V.;
  Bagala, A.; Scornaienchi, M.; Brancati, C.; Greco, C. M.: Hb J-Wenchang-Wuming
  or alpha-11(A9)lys-to-gln in an Italian woman. Hemoglobin 19: 277-280,
  309. Quattrin, N.; Ventruto, V.: Hemoglobin Mexico in a Sardinian
  woman. Helv. Med. Acta 33: 388-394, 1967.
  310. Rahbar, S.; Ala, F.; Akhavan, E.; Nowzari, G.; Shoa'i, I.; Zamanianpoor,
  M. H.: Two new hemoglobins: hemoglobin Perspolis (alpha 64 (E13)
  asp-to-tyr) and hemoglobin J Kurosh (alpha 19 (AB) ala-to-asp). Biochim.
  Biophys. Acta 427: 119-125, 1976.
  311. Rahbar, S.; Kinderlerer, J. L.; Lehmann, H.: Haemoglobin L Persian
  Gulf: alpha 57 (E6) glycine leads to arginine. Acta Haemat. 42:
  169-175, 1969.
  312. Rahbar, S.; Mahdavi, N.; Nowzari, G.; Mostafavi, I.: Hemoglobin
  Arya: alpha 47, aspartic acid to asparagine. Biochim. Biophys. Acta 386:
  525-529, 1975.
  313. Rahbar, S.; Nowzari, G.; Daneshmand, P.: Hemoglobin Daneshgah-Tehran
  alpha 72 (EF1) histidine-to-arginine. Nature N.B. 245: 268-269,
  314. Ranney, H. M.; O'Brien, C.; Jacobs, A. S.: An abnormal human
  foetal haemoglobin with an abnormal alpha-polypeptide chain. Nature 194:
  743-745, 1962.
  315. Raper, A. B.: Unusual haemoglobin variant in a Gujerati Indian. Brit.
  Med. J. 1: 1285-1286, 1957.
  316. Reeders, S. T.: Personal Communication. Oxford, England  9/26/1986.
  317. Reynolds, C. A.; Huisman, T. H. J.: Hemoglobin Russ or alpha-2
  (51 arg) beta-2. Biochim. Biophys. Acta 130: 541-543, 1966.
  318. Rhoda, M.-D.; Martin, J.; Blouquit, Y.; Garel, M.-C.; Edelstein,
  S. J.; Rosa, J.: Sickle cell hemoglobin fiber formation strongly
  inhibited by the Stanleyville II mutation (alpha78 asn-to-lys). Biochem.
  Biophys. Res. Commun. 111: 8-13, 1983.
  319. Romao, L.; Cash, F.; Weiss, I.; Liebhaber, S.; Pirastu, M.; Galanello,
  R.; Loi, A.; Paglietti, E.; Ioannou, P.; Cao, A.: Human alpha-globin
  gene expression is silenced by terminal truncation of chromosome 16p
  beginning immediately 3-prime of the zeta-globin gene. Hum. Genet. 89:
  323-328, 1992.
  320. Romero, M. J.; Garrido, M. L.; Abril, E.; Garrido, F.; de Pablos,
  J. Ma.: Detection of Hb J-Camaguey (alpha-141(HC3)arg-to-gly) in
  three Spanish families. Hemoglobin 19: 287-289, 1995.
  321. Rosa, J.; Maleknia, N.; Vergos, D.; Dunet, R.: Une nouvelle
  hemoglobine anormale: l'hemoglobine J(alpha-Paris) 12 ala-a-asp. Nouv.
  Rev. Franc. Hemat. 6: 423-426, 1966.
  322. Rubin, E. M.; Kan, Y. W.: A simple sensitive prenatal test for
  hydrops fetalis caused by alpha-thalassaemia. Lancet 325: 75-77,
  1985. Note: Originally Volume I.
  323. Rucknagel, D. L.; Page, E. B.; Jensen, W. N.: Hemoglobin I:
  an inherited hemoglobin anomaly. Blood 10: 999-1009, 1955.
  324. Saenz, G. F.; Alvarado, M.; Arroyo, G.; Alfaro, E.; Montero,
  G.; Jimenez, J.; Martinez, G.; Lima, F.; Colombo, B.: Hemoglobin
  Suresnes in a Costa-Rican woman of Spanish-Indian ancestry. Hemoglobin 2:
  383-387, 1978.
  325. Saenz, G. F.; Elizondo, J.; Alvarado, M. A.; Atmetlla, F.; Arroyo,
  G.; Martinez, G.; Lima, F.; Colombo, B.: Chemical characterization
  of a new haemoglobin variant Haemoglobin J (Cubujuqui) (alpha 141
  (HC3) arg-to-ser). Biochim. Biophys. Acta 494: 48-50, 1977.
  326. Sanna, M. T.; Giardina, B.; Scatena, R.; Pellegrini, M.; Olianas,
  A.; Manca, L.; Masala, B.; Castagnola, M.; Corda, M.: Functional
  alterations in adult and fetal hemoglobin Sassari asp-alpha-126(H9)-to-his:
  the role of alpha-1-alpha-2 contact. J. Biol. Chem. 269: 18338-18342,
  327. Sansone, G.; Centa, A.; Sciarratta, V.; Gallo, E.; Lehmann, H.
  : Haemoglobin O Indonesia (alpha116 glu-to-lys) in an Italian family. Acta
  Haemat. 43: 40-47, 1970.
  328. Schiliro, G.; Russo, A.; Azzia, N.; Digiacomo, M. S.; Musumeci,
  S.; Russo, G.: Hemoglobin Koelliker (alpha minus 141 arg) in favism. Acta
  Haemat. 67: 229, 1982.
  329. Schiliro, G.; Russo-Mancuso, G.; Dibenedetto, S. P.; Samperi,
  P.; Di Cataldo, A.; Ragusa, R.; Testa, R.: Six rare hemoglobin variants
  found in Sicily. Hemoglobin 15: 431-437, 1991.
  330. Schmidt, R. M.; Bechtel, K. C.; Moo-Penn, W. F.: Hemoglobin
  Q(India), alpha 64 (E13) asp-to-his, and beta thalassemia in a Canadian
  family. Am. J. Clin. Path. 66: 446-448, 1976.
  331. Schnedl, W. J.; Reisinger, E. C.; Katzensteiner, S.; Lipp, R.
  W.; Schreiber, F.; Hopmeier, P.; Krejs, G. J.: Haemoglobin O Padova
  and falsely low haemoglobin A(1c) in a patient with type I diabetes. J.
  Clin. Path. 50: 434-446, 1997.
  332. Schneider, R. G.; Alperin, J. B.; Beale, D.; Lehmann, H.: Hemoglobin
  I in an American Negro family: structural and hematologic studies. J.
  Lab. Clin. Med. 68: 940-946, 1966.
  333. Schneider, R. G.; Alperin, J. B.; Lehmann, H.: Sickling tests.
  Pitfalls in performance and interpretation. JAMA 202: 419-421, 1967.
  334. Schneider, R. G.; Atkins, R. J.; Hosty, T. S.; Tomlin, G.; Casey,
  R.; Lehmann, P. A.; Lorkin, P. A.; Nagai, K.: Haemoglobin Titusville
  (alpha 94 asp-to-asn): a new haemoglobin with a lowered affinity for
  oxygen. Biochim. Biophys. Acta 400: 365-373, 1975.
  335. Schneider, R. G.; Brimhall, B.; Jones, R. T.; Bryant, R.; Mitchell,
  C. B.; Goldberg, A. I.: Hb Ft. Worth: alpha27glu-to-gly--a variant
  present in unusually low concentration. Biochim. Biophys. Acta 243:
  164-169, 1971.
  336. Schneider, R. G.; Hightower, B.; Carpentieri, U.; Duerst, M.
  L.; Shih, T. B.; Jones, R. T.: Hemoglobin Oleander (alpha116 (GH4)
  glu-to-gln): structural and functional characterization. Hemoglobin 6:
  465-480, 1980.
  337. Schoenfelder, S.; Sexton, T.; Chakalova, L.; Cope, N. F.; Horton,
  A.; Andrews, S.; Kurukuti, S.; Mitchell, J. A.; Umlauf, D.; Dimitrova,
  D. S.; Eskiw, C. H.; Luo, Y.; Wei, C.-L.; Ruan, Y.; Bieker, J. J.;
  Fraser, P.: Preferential associations between co-regulated genes
  reveal a transcription interactome in erythroid cells. Nature Genet. 42:
  53-61, 2010.
  338. Schroeder, W. A.; Jones, R. T.: Some aspects of the chemistry
  and function of human and animal hemoglobins. Fortschr. Chem. Organ.
  Naturst. 23: 113-194, 1965.
  339. Schroeder, W. A.; Shelton, J. B.; Shelton, J. R.; Powars, D.
  : Hemoglobin Sunshine Seth (alpha94 asp-to-his). Hemoglobin 3: 145-159,
  340. Schwartz, I. R.; Atwater, J.; Repplinger, E.; Tocantins, L. M.
  : Sickling of erythrocytes with I-A electrophoretic haemoglobin pattern. Fed.
  Proc. 16: 115, 1957.
  341. Sciarratta, G. V.; Ivaldi, G.; Molaro, G. L.; Sansone, G.; Salkie,
  M. L.; Wilson, J. B.; Reese, A. L.; Huisman, T. H. J.: The characterization
  of hemoglobin Manitoba or alpha(2)102(G9)ser-to-arg and hemoglobin
  Contaldo or alpha(2)103(G10)his-to-arg by high performance liquid
  chromatography. Hemoglobin 8: 169-181, 1984.
  342. Scott, A. F.; Phillips, J. A., III; Young, K. E.; Kazazian, H.
  H., Jr.; Smith, K. D.; Charache, S.; Clegg, J. B.: The molecular
  basis of hemoglobin Grady. Am. J. Hum. Genet. 33: 129-133, 1981.
  343. Sellaye, M.; Blouquit, Y.; Galacteros, F.; Arous, N.; Monplaisir,
  N.; Rhoda, M. D.; Braconnier, F.; Rosa, J.: A new silent hemoglobin
  variant in a black family from French West Indies: hemoglobin Le Lamentin
  alpha20 his-to-gln. FEBS Lett. 145: 128-130, 1982.
  344. Shelton, J. B.; Shelton, J. R.; Schroeder, W. A.; Powars, D.
  R.: Hb Aztec or alpha76(EF5) met-to-thr: detection of a silent mutant
  by high performance liquid chromatography. Hemoglobin 9: 325-332,
  345. Shibata, S.: Hereditary nigremia (geneticobiochemical aspects). Jpn.
  J. Hum. Genet. 9: 193-206, 1964.
  346. Shibata, S.; Iuchi, I.; Miyaji, T.; Ueda, S.: Spectroscopic
  characterization of hemoglobin M (Iwate) and hemoglobin M (Kurume),
  the two variants of hemoglobin M found in Japan. Acta Haemat. Jpn. 24:
  477-485 and 486-494, 1961.
  347. Shibata, S.; Miyaji, T.; Ohba, Y.: Abnormal hemoglobins in Japan. Hemoglobi  n 4:
  395-408, 1980.
  348. Shibata, S.; Tamura, A.; Iuchi, I.; Takahashi, H.: Hemoglobin
  M-1. Demonstration of a new abnormal hemoglobin in hereditary nigremia. Acta
  Haemat. Jpn. 23: 96-104, 1960.
  349. Shibata, S.; Ueda, S.; Miyaji, T.; Imamura, T.: Hemoglobinopathies
  in Japan. Hemoglobin 5: 509-515, 1981.
  350. Shimasaki, S.: A new hemoglobin variant, hemoglobin Nunobiki
  (alpha141 (HC3) arg-to-cys): notable influence of the carboxy-terminal
  cysteine upon various physico-chemical characteristics of hemoglobin. J.
  Clin. Invest. 75: 695-701, 1985.
  351. Shimasaki, S.; Iuchi, I.; Hidaka, K.; Mizuta, W.: The survey
  of abnormal hemoglobin in Kobe district. Jpn. J. Hum. Genet. 28:
  127-128, 1983.
  352. Shimizu, A.; Hayashi, A.; Yamamura, Y.; Tsugita, A.; Kitayama,
  K.: The structural study on a new hemoglobin variant, Hb M (Osaka). Biochim.
  Biophys. Acta 97: 472-482, 1965.
  353. Shimizu, A.; Tsugita, A.; Hayashi, A.; Yamamura, Y.: The primary
  structure of hemoglobin M (Iwate). Biochim. Biophys. Acta 107: 270-277,
  354. Shin, M.-C.; Chen, C.-M.; Liu, S.-C.; Huang, C.-H.; Lee, T.-P.;
  Chan, W.-L.; Chang, J.-G.: Hb UBE-2 in a Taiwanese subject: an A-to-G
  substitution at codon 68 of the alpha-2-globin gene. Hemoglobin 26:
  99-101, 2002.
  355. Silvestroni, E.; Bianco, I.; Brancati, C.: Haemoglobins N and
  P in Italian families. Nature 200: 658-659, 1963.
  356. Simmers, R. N.; Mulley, J. C.; Hyland, V. J.; Callen, D. F.;
  Sutherland, G. R.: Mapping the human alpha globin gene complex to
  16p13.2-pter. J. Med. Genet. 24: 761-766, 1987.
  357. Smith, E. W.; Torbert, J. V.: Study of two abnormal hemoglobins
  with evidence for a new genetic locus for hemoglobin formation. Bull.
  Johns Hopkins Hosp. 102: 38-45, 1958.
  358. Southern, E. M.: Detection of specific sequences among DNA fragments
  separated by gel electrophoresis. J. Molec. Biol. 98: 503-517, 1975.
  359. Spivak, V. A.; Molchanova, T. P.; Ermakov, N. V.; Tokarev, Y.
  N.; Martinez, G.; Szelenyi, J.; Horanyi, M.; Foldi, J.; Hollan, S.;
  Kazieva, H.; Shamov, I. A.: A new hemoglobin variant: Hb Dagestan
  alpha60(E9) lys-to-glu. Hemoglobin 5: 133-138, 1981.
  360. Suarez, C. R.; Jue, D. L.; Moo-Penn, W. F.: Hemoglobin Savaria--alpha49(CE7  )ser-to-arg
  in the United States. Hemoglobin 9: 627-629, 1985.
  361. Sugihara, J.; Imamura, T.; Kagimoto, M.; Matsuo, T.; Yamada,
  H.; Imoto, T.; Yanase, T.: A new electrophoretic variant of hemoglobin
  (Munakata) in which a lysine residue is replaced by a methionine residue
  at position 90 of the alpha-chain. Biochim. Biophys. Acta 744: 119-120,
  362. Sugihara, J.; Imamura, T.; Yamada, H.; Imoto, T.; Matsuo, T.;
  Sumida, I.; Yanase, T.: A new electrophoretic variant of hemoglobin
  (Ogi) in which a leucine residue is replaced by an arginine residue
  at position 34 of the alpha-chain. Biochim. Biophys. Acta 701: 45-48,
  363. Sukumaran, P. K.; Merchant, S. M.; Desai, M. P.; Wiltshire, B.
  G.; Lehmann, H.: Haemoglobin Q India (alpha-64 (E13) aspartic acid
  to histidine). Associated with beta-thalassemia observed in three
  Sindhi families. J. Med. Genet. 9: 436-442, 1972.
  364. Sukumaran, P. K.; Pik, C.: Some observations on haemoglobin
  L(Bombay). Biochim. Biophys. Acta 104: 290-292, 1965.
  365. Sumida, I.: Studies of abnormal hemoglobins in western Japan:
  frequency of visible hemoglobin variants, and chemical characterization
  of hemoglobin Sawara (alpha26ala-beta2) and hemoglobin Mugino (Hb
  L Ferrara; alpha247gly-beta2). Jpn. J. Hum. Genet. 19: 343-363,
  366. Sumida, I.; Ohta, Y.; Imamura, T.; Yanase, T.: Hemoglobin Sawara:
  alpha 6 (A4) aspartic acid to alanine. Biochim. Biophys. Acta 322:
  23-26, 1973.
  367. Suzuki, T.; Hayashi, A.; Yamamura, Y.; Enoki, Y.; Tyuma, I.:
  Functional abnormality of hemoglobin M (Osaka). Biochem. Biophys.
  Res. Commun. 19: 691-695, 1965.
  368. Szelenyi, J. G.; Horanyi, M.; Foldi, J.; Hudacsek, J.; Istvan,
  L.; Hollan, S. R.: A new hemoglobin variant in Hungary: Hb Savaria-alpha
  49 (CE7) ser-to-arg. Hemoglobin 4: 27-38, 1980.
  369. Tamura, A.: Black blood disease. Jpn. J. Hum. Genet. 9: 183-192,
  370. Thillet, J.; Blouquit, Y.; Perrone, F.; Rosa, J.: Hemoglobin
  Pontoise: alpha 63 ala-to-asp (E12): a new fast moving variant. Biochim.
  Biophys. Acta 491: 16-22, 1977.
  371. Thompson, R. B.; Rau, P. J.; Odom, J.; Bell, W. N.: The sickling
  phenomenon in a white male without Hb-S. Acta Haemat. 34: 347-353,
  372. Tonz, O.; Simon, H. A.; Hasselfeld, W.: Untersuchung einer grossen
  Haemoglobin-M-Sippe. Entdeckung eines neuen Blutfarbstoffes: Hb M-Oldenburg. Sch  weiz.
  Med. Wschr. 92: 1311-1313, 1962.
  373. Trabuchet, G.; Morle, F.; Verdier, G.; Godet, J.; Benabadji,
  M.; Nigon, V. M.: Mapping the alpha-globin genes in Hb J Mexico carriers. Hum.
  Genet. 62: 164-166, 1982.
  374. Traeger-Synodinos, J.; Harteveld, C. L.; Kanavakis, E.; Giordano,
  P. C.; Kattamis, C.; Bernini, L. F.: Hb Aghia Sophia (alpha-62(E11)val-to-0
  (alpha-1)), an 'in-frame' deletion causing alpha-thalassemia. Hemoglobin 23:
  317-324, 1999.
  375. Trincao, C.; Demelo, J. M.; Lorkin, P. A.; Lehmann, H.: Haemoglobin
  J Paris in the south of Portugal (Algarve). Acta Haemat. 39: 291-298,
  376. Turbpaiboon, C.; Svasti, S.; Sawangareetakul, P.; Winichagoon,
  P.; Srisomsap, C.; Siritanaratkul, N.; Fucharoen, S.; Wilairat, P.;
  Svasti, J.: Hb Siam (alpha-15(A13)gly-to-arg(alpha-1) (GGT-to-CGT))
  is a typical alpha chain hemoglobinopathy without an alpha-thalassemic
  effect. Hemoglobin 26: 77-81, 2002.
  377. Vandenplas, S.; Higgs, D. R.; Nicholls, R. D.; Bester, A. J.;
  Mathew, C. G. P.: Characterization of a new alpha(0) thalassemia
  defect in the South African population. Brit. J. Haemat. 66: 539-542,
  378. Van Ros, G.; Beale, D.; Lehmann, H.: Hemoglobin Stanleyville-II
  (alpha 78 asparagine to lysine). Brit. Med. J. 4: 92-93, 1968.
  379. Vasseur, C.; Blouquit, Y.; Kister, J.; Prome, D.; Kavanaugh,
  J. S.; Rogers, P. H.; Guillemin, C.; Arnone, A.; Galacteros, F.; Poyart,
  C.; Rosa, J.; Wajcman, H.: Hemoglobin Thionville: an alpha-chain
  variant with a substitution of a glutamate for valine at NA-1 and
  having an acetylated methionine NH(2) terminus. J. Biol. Chem. 267:
  12682-12691, 1992.
  380. Vasseur, C.; Guillemin, C.; Galacteros, F.; Wajcman, H.: Hemoglobin
  Thionville: an alpha chain variant with substitution of a glutamic
  residue for valine NA-1 and having an extended N-terminus. (Abstract) Blood 76
  (suppl. 1): 78a, 1990.
  381. Vella, F.; Casey, R.; Lehmann, H.; Labossiere, A.; Jones, T.
  G.: Haemoglobin Ottawa: alpha 15 gly-to-arg. Biochim. Biophys. Acta 336:
  25-29, 1974.
  382. Vella, F.; Charlesworth, D.; Lorkin, P. A.; Lehmann, H.: Hemoglobin
  Broussais: alpha 90 lys replaced by asn. Canad. J. Biochem. 48:
  408-410, 1970.
  383. Vella, F.; Galbraith, P.; Wilson, J. B.; Wong, S. C.; Folger,
  G. C.; Huisman, T. H. J.: Hemoglobin St. Claude or alpha 127 (H10)
  lys-to-thr. Biochim. Biophys. Acta 365: 318-323, 1974.
  384. Vella, F.; Wells, R. H. C.; Ager, J. A. M.; Lehmann, H.: A haemoglobinopath  y
  involving haemoglobin H and a new (Q) haemoglobin. Brit. Med. J. 1:
  752-755, 1958.
  385. Vella, F.; Wiltshire, B.; Lehmann, H.; Galbraith, P.: Hemoglobin
  Winnipeg. Clin. Biochem. 6: 66-70, 1973.
  386. Vettore, L.; De Sandre, G.; Di Iorio, E. E.; Winterhalter, K.
  H.; Lang, A.; Lehmann, H.: A new abnormal hemoglobin O Padova, alpha
  30 (B11) glu-to-lys, and a dyserythropoietic anemia with erythroblastic
  multinuclearity coexisting in the same patient. Blood 44: 869-878,
  387. Virshup, D. M.; Zinkham, W. H.; Hine, T.; Baine, R. M.; Jue,
  D. L.; Moo-Penn, W. F.: Hemoglobin Catonsville: an unstable, high
  affinity variant with an insertion of glutamic acid between residues
  37(pro) and 38 (thr) in the alpha chain. (Abstract) Blood 72 (suppl.):
  75a, 1988.
  388. Wainscoat, J. S.; Higgs, D. R.; Kanavakis, E.; Cao, A.; Georgiou,
  D.; Clegg, J. B.; Weatherall, D. J.: Association of two DNA polymorphisms
  in the alpha-globin gene cluster: implications for genetic analysis. Am.
  J. Hum. Genet. 35: 1086-1089, 1983.
  389. Wainscoat, J. S.; Kanavakis, E.; Weatherall, D. J.; Walker, J.;
  Holmes-Seidle, M.; Bobrow, M.; Donnison, A. B.: Regional localisation
  of the human alpha-globin genes. (Letter) Lancet 318: 301-302, 1981.
  Note: Originally Volume II.
  390. Wajcman, H.; Beklhodja, O.; Labie, D.: Hb Setif: G1 (94) alpha--asp-to-tyr.  
  A new chain hemoglobin variant with substitution of the residue involved
  in a hydrogen bond between unlike subunits. FEBS Lett. 27: 298-300,
  391. Wajcman, H.; Blouquit, Y.; Gombaud-Saintonge, G.; Riou, J.; Galacteros,
  F.: HB Fontainebleau (alpha21(B2)ala-to-pro), a new silent mutant
  hemoglobin. Hemoglobin 13: 421-429, 1989.
  392. Wajcman, H.; Blouquit, Y.; Lahary, A.; Soummer, A. M.; Groff,
  P.; Bardakdjian, J.; Prehu, C.; Riou, J.; Godard, C.; Galacteros,
  F.: Three new neutral alpha chain variants: Hb Bois Guillaume (alpha-65(E14)ala-  to-val),
  Hb Mantes-La-Jolie (alpha-79(EF8)ala-to-thr), and Hb Mosella (alpha-111(G18)ala-  to-thr). Hemoglobin 19:
  281-286, 1995.
  393. Wajcman, H.; Blouquit, Y.; Riou, J.; Kister, J.; Poyart, C.;
  Soria, J.; Galacteros, F.: A new hemoglobin variant found during
  investigations of diabetes mellitus: Hb Pavie [alpha-135(H18)val-to-glu]. Clin.
  Chim. Acta 188: 39-48, 1990.
  394. Wajcman, H.; Blouquit, Y.; Vasseur, C.; Le Querrec, A.; Laniece,
  M.; Melevendi, C.; Rasore, A.; Galacteros, F.: Two new human hemoglobin
  variants caused by unusual mutational events: Hb Zaire contains a
  five residue repetition within the alpha-chain and Hb Duino has two
  residues substituted in the beta-chain. Hum. Genet. 89: 676-680,
  395. Wajcman, H.; Bost, M.; Blouquit, Y.; Prehu, C.; Riou, J.; Galacteros,
  F.: Two new alpha chain variants found during glycated hemoglobin
  screening: Hb Tatras (alpha7(A5)lys-to-asn) and Hb Lisbon (alpha23(B4)glu-to-asp  ). Hemoglobin 18:
  427-432, 1994.
  396. Wajcman, H.; Dahmane, M.; Prehu, C.; Costes, B.; Prome, D.; Arous,
  N.; Bardakdjian-Michau, J.; Riou, J.; Ayache, K. C.; Godart, C.; Galacteros,
  F.: Haemoglobin J-Biskra: a new mildly unstable alpha-1 gene variant
  with a deletion of eight residues (alpha-50-57, alpha-51-58 or alpha-52-59)
  including the distal histidine. Brit. J. Haemat. 100: 401-406, 1998.
  397. Wajcman, H.; Delaunay, J.; Francina, A.; Rosa, J.; Galacteros,
  F.: Hemoglobin Nouakchott [alpha114(GH2)pro-to-leu]: a new hemoglobin
  variant displaying an unusual increase in hydrophobicity. Biochim.
  Biophys. Acta 998: 25-31, 1989.
  398. Wajcman, H.; Elion, J.; Boissel, J. P.; Labie, D.; Jos, J.; Girot,
  R.: A silent hemoglobin variant: hemoglobin Necker Enfants-Malades
  alpha 20 (B1) his-to-tyr. Hemoglobin 4: 177-184, 1980.
  399. Wajcman, H.; Gombaud-Saintonge, G.; Galacteros, F.; Martha, M.;
  Vertongen, F.: Hb Belliard (alpha56 (E5) lys-to-asn): a new fast-moving
  alpha chain variant found in a subject of Spanish origin. Hemoglobin 13:
  157-162, 1990.
  400. Wajcman, H.; Kister, J.; Galacteros, F.; Josifovska, O.; Spielvogel,
  A.; Nagel, R.L.: Hb Montefiore [alpha126 (H9) asp-to-tyr]: an abnormal
  hemoglobin with high oxygen affinity and absence of cooperativity..
  (Abstract) Blood 80 (suppl. 1): 82a, 1992.
  401. Wajcman, H.; Kister, J.; M'Rad, A.; Marden, M. C.; Riou, J.;
  Galacteros, F.: Hb Val de Marne [alpha133 (H16) ser-to-arg]: a new
  hemoglobin variant with moderate increase in oxygen affinity.. Hemoglobin 17:
  407-417, 1993.
  402. Wajcman, H.; Kister, J.; M'Rad, A.; Soummer, A. M.; Galacteros,
  F.: Hb Cemenelum [alpha92 (FG4) arg-to-trp]: a hemoglobin variant
  of the alpha-1/beta-2 interface that displays a moderate increase
  in oxygen affinity. Ann. Hemat. 68: 73-76, 1994.
  403. Wajcman, H.; Kister, J.; Marden, M.; Lahary, A.; Monconduit,
  M.; Galacteros, F.: Hemoglobin Rouen (alpha140(HC2)tyr-to-his): alteration
  of the alpha chain C-terminal region and moderate increase in oxygen
  affinity. Biochim. Biophys. Acta 1180: 53-57, 1992.
  404. Wajcman, H.; Kister, J.; Riou, J.; Galacteros, F.; Girot, R.;
  Maier-Redelsperger, M.; Nayudu, N. V. S.; Giordano, P. C.: Hb Godavari
  (alpha-95(G2)pro to thr): a neutral amino acid substitution in the
  alpha-1/beta-2 interface that modifies the electrophoretic mobility
  of hemoglobin. Hemoglobin 22: 11-22, 1998.
  405. Wajcman, H.; Vasseur, C.; Blouquit, Y.; Rosa, J.; Labie, D.;
  Najman, A.; Reman, O.; Leporrier, M.; Galacteros, F.: Unstable alpha-chain
  hemoglobin variants with factitious beta-thalassemia biosynthetic
  ratio: Hb Questembert (alpha131 [H14] ser-to-pro) and Hb Caen (alpha132
  [H15] val-to-gly). Am. J. Hemat. 42: 367-374, 1993.
  406. Wajcman, H.; Vasseur, C.; Galacteros, F.; Blouquit, Y.; Rosa,
  J.; Labie, D.; Najman, A.: Hb Questembert [alpha-131(H14)ser-to-pro]:
  a new highly unstable variant with unbalanced chain synthesis. (Abstract) Blood   76
  (suppl. 1): 79a, 1990.
  407. Waye, J. S.; Eng, B.; Patterson, M.; Carcao, M. D.; Chang, L.;
  Olivieri, N. F.; Chui, D. H. K.: Identification of two new alpha-thalassemia
  mutations in exon 2 of the alpha-1-globin gene. Hemoglobin 25: 391-396,
  408. Weatherall, D. J.; Clegg, J. B.: Recent developments in the
  molecular genetics of human hemoglobin. Cell 16: 467-479, 1979.
  409. Webber, B. B.; Lam, H.; Wilson, J. B.; Huisman, T. H. J.: Hb
  Albany-GA or alpha11(A9)lys-to-asn. Hemoglobin 7: 257-262, 1983.
  410. Webber, B. B.; Wilson, J. B.; Gu, L.-H.; Huisman, T. H. J.:
  Hb Ethiopia or alpha140(HC2)tyr-to-his. Hemoglobin 16: 441-443,
  411. Weitkamp, L. R.; Stamatoyannopoulos, G.; Rowley, P. T.; Kirk,
  R. L.: The linkage relationships of the haemoglobin beta, delta and
  alpha loci with 34 genetic marker systems. Ann. Hum. Genet. 41:
  61-75, 1977.
  412. Wilkie, A. O. M.; Higgs, D. R.; Rack, K. A.; Buckle, V. J.; Spurr,
  N. K.; Fischel-Ghodsian, N.; Ceccherini, I.; Brown, W. R. A.; Harris,
  P. C.: Stable length polymorphism of up to 260 kb at the tip of the
  short arm of human chromosome 16. Cell 64: 595-606, 1991.
  413. Williamson, D.; Langdown, J. V.; Myles, T.; Mason, C.; Henthorn,
  J. S.; Davies, S. C.: Polycythaemia and microcytosis arising from
  the combination of a new high oxygen affinity haemoglobin (Hb Luton,
  alpha-89 his-to-leu) and alpha-thalassaemia trait. Brit. J. Haemat. 82:
  621-622, 1992.
  414. Wilson, J. T.; deRiel, J. K.; Forget, B. G.; Marotta, C. A.;
  Weissman, S. M.: Nucleotide sequence of 3-prime untranslated portion
  of human alpha globin mRNA. Nucleic Acids Res. 4: 2353-2368, 1977.
  415. Wiltshire, B. G.; Clark, K. G. A.; Lorkin, P. A.; Lehmann, H.
  : Haemoglobin Denmark Hill (alpha 95 (G2) pro-to-ala), a variant with
  unusual electrophoretic and oxygen-binding properties. Biochim. Biophys.
  Acta 278: 459-464, 1972.
  416. Winter, W. P.; Rucknagel, D. L.; Fielding, J.: Identification
  of several rare hemoglobin variants discovered in a population survey
  including a new variant Hb Garden State alpha-82 ala-to-asp. (Abstract) Clin.
  Res. 26: 122A, 1978.
  417. Wong, S. C.; Ali, M. A. M.; Pond, J. R.; Rubin, S. M.; Johnson,
  S. E. N.; Wilson, J. B.; Huisman, T. H. J.: Hb J-Singa (alpha-78
  asn-to-asp), a newly discovered hemoglobin variant with the same amino
  acid substitution as one of the two present in Hb J-Singapore (alpha-78
  asn-to-asp, alpha-79 ala-to-gly). Biochim. Biophys. Acta 784: 187-188,
  418. Yamaoka, K.; Kawamura, K.; Hanada, M.; Seita, M.; Hitsumoto,
  S.; Ooya, I.: Studies on abnormal haemoglobins. Jpn. J. Hum. Genet. 5:
  99-111, 1960.
  419. Yanase, T.; Hanada, M.; Seita, M.; Ohya, I.; Ohta, Y.; Imamura,
  T.; Fujimura, T.; Kawasaki, K.; Yamaoka, K.: Molecular basis of morbidity
  from a series of studies of hemoglobinopathies in western Japan. Jpn.
  J. Hum. Genet. 13: 40-53, 1968.
  420. Yi, C. H.; Li, H. J.; Li, H. W.; Zhang, X. S.; Zhao, X. N.; Zhang,
  C. T.: Hemoglobin Shenyang found among Uygurs in P.R. China. Hemoglobin 13:
  97-99, 1989.
  421. Yi-Tao, Z.; Headlee, M. E.; Henson, J.; Lam, H.; Wilson, J. B.;
  Huisman, T. H. J.: Identification of hemoglobin G-Philadelphia (alpha68
  asn-to-lys) and hemoglobin Matsue-Oki (alpha75 asp-to-asn) in a black
  infant. Biochim. Biophys. Acta 707: 206-212, 1982.
  422. Yodsowan, B.; Svasti, J.; Srisomsap, C.; Winichagoon, P.; Fucharoen,
  S.: Hb Siam [alpha-15(A13)gly-arg] is a GGT-CGT mutation in the alpha-1-globin
  gene. Hemoglobin 24: 71-75, 2000.
  423. Yongsuwan, S.; Svasti, J.; Fucharoen, S.: Decreased heat stability
  found in purified hemoglobin Queens (alpha34(B15)leu-to-arg). Hemoglobin 11:
  567-570, 1987.
  424. Zeng, F.-Y.; Fucharoen, S.; Huang, S.-Z.; Rodgers, G. P.: Hb
  Q-Thailand (alpha74 (EF3) asp-to-his): gene organization, molecular
  structure, and DNA diagnosis. Hemoglobin 16: 481-491, 1992.
  425. Zeng, Y.; Huang, S.; Liang, X.; Long, G.; Lam, H.; Wilson, J.
  B.; Huisman, T. H. J.: Hb Wuming or alpha11 (A9) lys-to-gln. Hemoglobin 5:
  679-687, 1981.
  426. Zeng, Y.; Huang, S.; Qiu, X.; Cheng, G.; Ren, Z.; Jin, Q.; Chen,
  C.; Jiao, C.; Tang, Z.; Liu, R.; Bao, X.; Zeng, L.; Duan, Y.; Zhang,
  G.: Hemoglobin Chongqing (alpha2 (NA2) leu-to-arg) and hemoglobin
  Harbin (alpha16 (A14) lys-to-met) found in China. Hemoglobin 8:
  569-581, 1984.
  427. Zeng, Y.; Huang, S.; Zhou, X.; Qiu, X.; Dong, Q.; Li, M.; Bai,
  J.: Hb Shenyang (alpha26 (B7) ala-to-glu): a new unstable variant
  found in China. Hemoglobin 6: 625-628, 1982.
  428. Zhao, W.; Wilson, J. B.; Webber, B. B.; Kutlar, A.; Tamagnini,
  G. P.; Kuam, B.; Huisman, T. H. J.: Hb Hekinan observed in three
  Chinese from Macau: identification of the GAG-to-GAT mutation in the
  alpha-1-globin gene. Hemoglobin 14: 627-635, 1990.
  429. Zhou, Z.; Chen, L.; Chen, P.; Zhang, K.; Wang, Y.: Hemoglobin
  Hangzhou alpha64 (E13) asp-to-gly: a new variant found in China. Hemoglobin 11:
  31-33, 1987.
  430. Zimmer, E. A.; Martin, S. L.; Beverley, S. M.; Kan, Y. W.; Wilson,
  A. C.: Rapid duplication and loss of genes coding for the alpha chains
  of hemoglobin. Proc. Nat. Acad. Sci. 77: 2158-2162, 1980.
  431. Zwerdling, T.; Williams, S.; Nasr, S. A.; Rucknagel, D. L.:
  Hb Port Huron (alpha56(E5)lys-to-arg): a new alpha chain variant. Hemoglobin 15:  
  381-391, 1991.
Clinical Synopsis:
     Alpha polypeptide hemoglobin chain;
     Alpha-thalassemia silent carrier (3 normal genes);
     Alpha-thalassemia with microcytosis (2 normal genes);
     Alpha-thalassemia with microcytosis and hemolysis, Hb H disease (1
     normal gene);
     Alpha-thalassemia with fatal Hb Bart's hydrops fetalis (No normal
     Polycythemia (e.g. Hb Chesapeake .0018);
     Unstable hemoglobin (e.g. Hb Contaldo .0022);
     Hemolysis (e.g. Hb Koelliker .0083);
     Methemoglobinemia (e.g. Hb M Boston .0092);
     Amelioration of SS disease (e.g. Hb Memphis .0096);
     Congenital Heinz body anemia (e.g. Hb Toyama .0152)
  Two alpha-globin genes: 5-prime or alpha-2 and 3-prime or alpha-1)
     Decreased heme-heme interaction (e.g. Hb Kanagawa .0169);
     Increased oxygen affinity (e.g. Hb Nunobiki .0109);
     Reduced oxygen affinity (e.g. Thionville .0168);
     Decreased reversible oxygen-binding capacity (e.g. Hb L (Bombay) .9999)
     Autosomal dominant (16p13.33 to 16p13.11)
  Patricia A. Hartz - updated: 01/28/2010
  Carol A. Bocchini - updated: 5/22/2009
  Victor A. McKusick - updated: 9/19/2006
  Ada Hamosh - updated: 7/21/2006
  Victor A. McKusick - updated: 3/29/2006
  Victor A. McKusick - updated: 10/11/2005
  Victor A. McKusick - updated: 8/11/2005
  Victor A. McKusick - updated: 5/11/2005
  Victor A. McKusick - updated: 12/6/2004
  Victor A. McKusick - updated: 8/6/2004
  Victor A. McKusick - updated: 6/2/2004
  Victor A. McKusick - updated: 1/20/2004
  Victor A. McKusick - updated: 1/15/2004
  Victor A. McKusick - updated: 9/2/2003
  Victor A. McKusick - updated: 3/5/2003
  Victor A. McKusick - updated: 10/2/2002
  Victor A. McKusick - updated: 6/3/2002
  Victor A. McKusick - updated: 5/23/2002
  Victor A. McKusick - updated: 2/27/2002
  Victor A. McKusick - updated: 11/1/2001
  Victor A. McKusick - updated: 10/11/2001
  Victor A. McKusick - updated: 5/1/2000
  Victor A. McKusick - updated: 1/19/2000
  Victor A. McKusick - updated: 7/14/1999
  Ada Hamosh - updated: 4/21/1999
  Victor A. McKusick - updated: 2/24/1999
  Victor A. McKusick - updated: 2/9/1999
  Ada Hamosh - updated: 6/12/1998
  Victor A. McKusick - updated: 4/30/1998
  Victor A. McKusick - updated: 2/6/1998
  Victor A. McKusick - updated: 8/27/1997
Creation Date: 
  Victor A. McKusick: 6/23/1986
Edit Dates: 
  alopez: 01/28/2010
  terry: 6/3/2009
  carol: 5/22/2009
  terry: 1/15/2009
  terry: 1/14/2009
  wwang: 10/4/2007
  wwang: 10/3/2006
  terry: 9/19/2006
  alopez: 7/25/2006
  terry: 7/21/2006
  terry: 6/23/2006
  terry: 3/29/2006
  carol: 10/21/2005
  wwang: 10/21/2005
  terry: 10/11/2005
  carol: 10/3/2005
  terry: 8/11/2005
  wwang: 6/7/2005
  terry: 5/17/2005
  wwang: 5/13/2005
  terry: 5/11/2005
  terry: 2/7/2005
  tkritzer: 1/25/2005
  terry: 12/6/2004
  tkritzer: 8/10/2004
  terry: 8/6/2004
  tkritzer: 6/8/2004
  terry: 6/2/2004
  carol: 3/17/2004
  tkritzer: 1/21/2004
  terry: 1/20/2004
  terry: 1/15/2004
  cwells: 9/3/2003
  terry: 9/2/2003
  carol: 8/29/2003
  carol: 8/25/2003
  carol: 5/13/2003
  terry: 4/17/2003
  terry: 3/5/2003
  terry: 3/3/2003
  tkritzer: 12/10/2002
  tkritzer: 10/7/2002
  tkritzer: 10/3/2002
  tkritzer: 10/2/2002
  carol: 6/3/2002
  terry: 6/3/2002
  terry: 5/23/2002
  cwells: 3/22/2002
  cwells: 3/20/2002
  terry: 2/27/2002
  mcapotos: 11/1/2001
  mcapotos: 10/26/2001
  mcapotos: 10/11/2001
  cwells: 5/31/2001
  mcapotos: 2/19/2001
  mcapotos: 2/15/2001
  terry: 2/14/2001
  mcapotos: 5/26/2000
  mcapotos: 5/24/2000
  terry: 5/1/2000
  mcapotos: 2/7/2000
  mcapotos: 2/4/2000
  carol: 1/28/2000
  mcapotos: 1/28/2000
  mcapotos: 1/24/2000
  terry: 1/19/2000
  carol: 12/8/1999
  mgross: 7/16/1999
  terry: 7/14/1999
  carol: 6/27/1999
  terry: 4/30/1999
  alopez: 4/21/1999
  terry: 3/24/1999
  carol: 3/9/1999
  terry: 2/24/1999
  mgross: 2/16/1999
  mgross: 2/11/1999
  terry: 2/9/1999
  dkim: 7/21/1998
  carol: 7/2/1998
  alopez: 6/12/1998
  terry: 6/5/1998
  alopez: 5/14/1998
  carol: 5/4/1998
  terry: 4/30/1998
  mark: 2/16/1998
  terry: 2/6/1998
  mark: 10/19/1997
  jenny: 9/5/1997
  terry: 8/27/1997
  alopez: 7/31/1997
  alopez: 7/29/1997
  terry: 7/10/1997
  mark: 7/10/1997
  alopez: 7/10/1997
  terry: 7/9/1997
  terry: 7/7/1997
  mark: 6/14/1997
  terry: 11/15/1996
  terry: 11/13/1996
  mark: 4/12/1996
  terry: 4/9/1996
  mark: 2/13/1996
  terry: 2/5/1996
  mark: 11/17/1995
  terry: 11/18/1994
  jason: 7/29/1994
  pfoster: 4/25/1994
  mimadm: 4/17/1994
  warfield: 4/8/1994
DBGET integrated database retrieval system