KEGG   PATHWAY: lmj00020
Entry
lmj00020                    Pathway                                
Name
Citrate cycle (TCA cycle) - Listeria monocytogenes J0161
Description
The citrate cycle (TCA cycle, Krebs cycle) is an important aerobic pathway for the final steps of the oxidation of carbohydrates and fatty acids. The cycle starts with acetyl-CoA, the activated form of acetate, derived from glycolysis and pyruvate oxidation for carbohydrates and from beta oxidation of fatty acids. The two-carbon acetyl group in acetyl-CoA is transferred to the four-carbon compound of oxaloacetate to form the six-carbon compound of citrate. In a series of reactions two carbons in citrate are oxidized to CO2 and the reaction pathway supplies NADH for use in the oxidative phosphorylation and other metabolic processes. The pathway also supplies important precursor metabolites including 2-oxoglutarate. At the end of the cycle the remaining four-carbon part is transformed back to oxaloacetate. According to the genome sequence data, many organisms seem to lack genes for the full cycle [MD:M00009], but contain genes for specific segments [MD:M00010 M00011].
Class
Metabolism; Carbohydrate metabolism
Pathway map
lmj00020  Citrate cycle (TCA cycle)
lmj00020

Module
lmj_M00010  Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate [PATH:lmj00020]
lmj_M00307  Pyruvate oxidation, pyruvate => acetyl-CoA [PATH:lmj00020]
Other DBs
GO: 0006099
Organism
Listeria monocytogenes J0161 [GN:lmj]
Gene
LMOG_00128  methylcitrate synthase [KO:K01647] [EC:2.3.3.1]
LMOG_00046  aconitate hydratase 1 [KO:K01681] [EC:4.2.1.3]
LMOG_00129  isocitrate dehydrogenase NADP-dependent [KO:K00031] [EC:1.1.1.42]
LMOG_00336  dihydrolipoyl dehydrogenase [KO:K00382] [EC:1.8.1.4]
LMOG_00665  dihydrolipoyl dehydrogenase [KO:K00382] [EC:1.8.1.4]
LMOG_00985  fumarate hydratase class II [KO:K01679] [EC:4.2.1.2]
LMOG_03296  pyruvate carboxylase [KO:K01958] [EC:6.4.1.1]
LMOG_00668  pyruvate dehydrogenase E1 component alpha subunit [KO:K00161] [EC:1.2.4.1]
LMOG_00667  pyruvate dehydrogenase complex, E1 component, pyruvate dehydrogenase beta subunit [KO:K00162] [EC:1.2.4.1]
LMOG_00666  dihydrolipoamide S-acetyltransferase E2 component PdhC [KO:K00627] [EC:2.3.1.12]
LMOG_00909  pyruvate:ferredoxin oxidoreductase [KO:K03737] [EC:1.2.7.1 1.2.7.-]
Compound
C00022  Pyruvate
C00024  Acetyl-CoA
C00026  2-Oxoglutarate
C00036  Oxaloacetate
C00042  Succinate
C00068  Thiamin diphosphate
C00074  Phosphoenolpyruvate
C00091  Succinyl-CoA
C00122  Fumarate
C00149  (S)-Malate
C00158  Citrate
C00311  Isocitrate
C00417  cis-Aconitate
C05125  2-(alpha-Hydroxyethyl)thiamine diphosphate
C05379  Oxalosuccinate
C05381  3-Carboxy-1-hydroxypropyl-ThPP
C15972  Enzyme N6-(lipoyl)lysine
C15973  Enzyme N6-(dihydrolipoyl)lysine
C16254  [Dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine
C16255  [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine
Reference
  Authors
Nishizuka Y (ed).
  Title
[Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1980)
Reference
  Authors
Nishizuka Y, Seyama Y, Ikai A, Ishimura Y, Kawaguchi A (eds).
  Title
[Cellular Functions and Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1997)
Reference
  Authors
Michal G.
  Title
Biochemical Pathways
  Journal
Wiley (1999)
Related
pathway
lmj00010  Glycolysis / Gluconeogenesis
lmj00061  Fatty acid biosynthesis
lmj00071  Fatty acid degradation
lmj00190  Oxidative phosphorylation
lmj00220  Arginine biosynthesis
lmj00250  Alanine, aspartate and glutamate metabolism
lmj00280  Valine, leucine and isoleucine degradation
lmj00350  Tyrosine metabolism
lmj00470  D-Amino acid metabolism
lmj00630  Glyoxylate and dicarboxylate metabolism
KO pathway
ko00020   

DBGET integrated database retrieval system