KEGG   PATHWAY: map05215Help
Entry
map05215                    Pathway                                

Name
Prostate cancer
Description
Prostate cancer constitutes a major health problem in Western countries. It is the most frequently diagnosed cancer among men and the second leading cause of male cancer deaths. The identification of key molecular alterations in prostate-cancer cells implicates carcinogen defenses (GSTP1), growth-factor-signaling pathways (NKX3.1, PTEN, and p27), and androgens (AR) as critical determinants of the phenotype of prostate-cancer cells. Glutathione S-transferases (GSTP1) are detoxifying enzymes. Cells of prostatic intraepithelial neoplasia, devoid of GSTP1, undergo genomic damage mediated by carcinogens. NKX3.1, PTEN, and p27 regulate the growth and survival of prostate cells in the normal prostate. Inadequate levels of PTEN and NKX3.1 lead to a reduction in p27 levels and to increased proliferation and decreased apoptosis. Androgen receptor (AR) is a transcription factor that is normally activated by its androgen ligand. During androgen withdrawal therapy, the AR signal transduction pathway also could be activated by amplification of the AR gene, by AR gene mutations, or by altered activity of AR coactivators. Through these mechanisms, tumor cells lead to the emergence of androgen-independent prostate cancer.
Class
Human Diseases; Cancers
BRITE hierarchy
Pathway map
Prostate cancer
map05215

All organismsOrtholog table
Disease
H00024  
Prostate cancer
Reference
  Authors
Nelson WG, De Marzo AM, Isaacs WB.
  Title
Prostate cancer.
  Journal
N Engl J Med 349:366-81 (2003)
DOI:10.1056/NEJMra021562
Reference
  Authors
Li L, Ittmann MM, Ayala G, Tsai MJ, Amato RJ, Wheeler TM, Miles BJ, Kadmon D, Thompson TC.
  Title
The emerging role of the PI3-K-Akt pathway in prostate cancer progression.
  Journal
Prostate Cancer Prostatic Dis 8:108-18 (2005)
DOI:10.1038/sj.pcan.4500776
Reference
  Authors
Pienta KJ, Bradley D.
  Title
Mechanisms underlying the development of androgen-independent prostate cancer.
  Journal
Clin Cancer Res 12:1665-71 (2006)
DOI:10.1158/1078-0432.CCR-06-0067
Reference
  Authors
Feldman BJ, Feldman D.
  Title
The development of androgen-independent prostate cancer.
  Journal
Nat Rev Cancer 1:34-45 (2001)
DOI:10.1038/35094009
Reference
  Authors
Heinlein CA, Chang C.
  Title
Androgen receptor in prostate cancer.
  Journal
Endocr Rev 25:276-308 (2004)
DOI:10.1210/er.2002-0032
Reference
PMID:9422516
  Authors
Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP.
  Title
Androgen receptor gene and hormonal therapy failure of prostate cancer.
  Journal
Am J Pathol 152:1-9 (1998)
Reference
  Authors
Zhao XY, Malloy PJ, Krishnan AV, Swami S, Navone NM, Peehl DM, Feldman D.
  Title
Glucocorticoids can promote androgen-independent growth of prostate cancer cells through a mutated androgen receptor.
  Journal
Nat Med 6:703-6 (2000)
DOI:10.1038/76287
Reference
  Authors
Macri E, Loda M.
  Title
Role of p27 in prostate carcinogenesis.
  Journal
Cancer Metastasis Rev 17:337-44 (1998)
DOI:10.1023/A:1006133620914
Reference
  Authors
Steers WD.
  Title
5alpha-reductase activity in the prostate.
  Journal
Urology 58:17-24; discussion 24 (2001)
DOI:10.1016/S0090-4295(01)01299-7
Reference
PMID:8069858
  Authors
Lin D, Meyer DJ, Ketterer B, Lang NP, Kadlubar FF.
  Title
Effects of human and rat glutathione S-transferases on the covalent DNA binding of the N-acetoxy derivatives of heterocyclic amine carcinogens in vitro: a possible mechanism of organ specificity in their carcinogenesis.
  Journal
Cancer Res 54:4920-6 (1994)
Reference
  Authors
Grimes CA, Jope RS.
  Title
The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling.
  Journal
Prog Neurobiol 65:391-426 (2001)
DOI:10.1016/S0301-0082(01)00011-9
Reference
  Authors
Leshem O, Madar S, Kogan-Sakin I, Kamer I, Goldstein I, Brosh R, Cohen Y, Jacob-Hirsch J, Ehrlich M, Ben-Sasson S, Goldfinger N, Loewenthal R, Gazit E, Rotter V, Berger R
  Title
TMPRSS2/ERG promotes epithelial to mesenchymal transition through the ZEB1/ZEB2 axis in a prostate cancer model.
  Journal
PLoS One 6:e21650 (2011)
DOI:10.1371/journal.pone.0021650
Reference
  Authors
Yu J, Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, Wu L, Li J, Hu M, Gong Y, Cheng H, Laxman B, Vellaichamy A, Shankar S, Li Y, Dhanasekaran SM, Morey R, Barrette T, Lonigro RJ, Tomlins SA, Varambally S, Qin ZS, Chinnaiyan AM
  Title
An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression.
  Journal
Cancer Cell 17:443-54 (2010)
DOI:10.1016/j.ccr.2010.03.018
Reference
  Authors
Squire JA
  Title
TMPRSS2-ERG and PTEN loss in prostate cancer.
  Journal
Nat Genet 41:509-10 (2009)
DOI:10.1038/ng0509-509
Reference
  Authors
Adamo P, Ladomery MR
  Title
The oncogene ERG: a key factor in prostate cancer.
  Journal
Oncogene 35:403-14 (2016)
DOI:10.1038/onc.2015.109
Reference
  Authors
Burdova A, Bouchal J, Tavandzis S, Kolar Z
  Title
TMPRSS2-ERG gene fusion in prostate cancer.
  Journal
Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 158:502-10 (2014)
DOI:10.5507/bp.2014.065
Reference
  Authors
Helgeson BE, Tomlins SA, Shah N, Laxman B, Cao Q, Prensner JR, Cao X, Singla N, Montie JE, Varambally S, Mehra R, Chinnaiyan AM
  Title
Characterization of TMPRSS2:ETV5 and SLC45A3:ETV5 gene fusions in prostate cancer.
  Journal
Cancer Res 68:73-80 (2008)
DOI:10.1158/0008-5472.CAN-07-5352
Reference
  Authors
Kim H, Datta A, Talwar S, Saleem SN, Mondal D, Abdel-Mageed AB
  Title
Estradiol-ERbeta2 signaling axis confers growth and migration of CRPC cells through TMPRSS2-ETV5 gene fusion.
  Journal
Oncotarget (2016)
DOI:10.18632/oncotarget.11355
KO pathway
 

DBGET integrated database retrieval system