KEGG   PATHWAY: map04964
Entry
map04964                    Pathway                                
Name
Proximal tubule bicarbonate reclamation
Description
One of the major tasks of the renal proximal tubule (PT) is to secrete acid into the tubule lumen, thereby reabsorbing approximately 80% of the filtered bicarbonate (HCO3(-)), as well as generating "new HCO3(-)" for regulating blood pH. In the tubular lumen, filtered HCO3(-) combines with H(+) in a reaction catalyzed by CA IV. The CO2 thus produced rapidly diffuses into the tubular cells and is combined with water to produce intracellular H(+) and HCO3(-), catalyzed by soluble cytoplasmic CA II. HCO3(-) is then cotransported with Na(+) into blood via the NBC-1. The intracellular H(+) produced by CA II is secreted into the tubular lumen predominantly via the NHE-3. The PT creates the "new HCO3(-)" by taking glutamine and metabolizing it to two molecules each of NH4(+) and HCO3(-). The NH4(+) is excreted into the tubular lumen, and the HCO3(-) , which is "new HCO3(-) ," is returned to the blood, where it replaces the HCO3(-) lost earlier in the titration of nonvolatile acids.
Class
Organismal Systems; Excretory system
Pathway map
map04964  Proximal tubule bicarbonate reclamation
map04964

Reference
  Authors
Koeppen BM
  Title
The kidney and acid-base regulation.
  Journal
Adv Physiol Educ 33:275-81 (2009)
DOI:10.1152/advan.00054.2009
Reference
  Authors
Boron WF
  Title
Acid-base transport by the renal proximal tubule.
  Journal
J Am Soc Nephrol 17:2368-82 (2006)
DOI:10.1681/ASN.2006060620
Reference
PMID:9550618
  Authors
Hayashi M
  Title
Physiology and pathophysiology of acid-base homeostasis in the kidney.
  Journal
Intern Med 37:221-5 (1998)
DOI:10.2169/internalmedicine.37.221
Reference
  Authors
Wagner CA, Kovacikova J, Stehberger PA, Winter C, Benabbas C, Mohebbi N
  Title
Renal acid-base transport: old and new players.
  Journal
Nephron Physiol 103:p1-6 (2006)
DOI:10.1159/000090217
Reference
  Authors
Fry AC, Karet FE
  Title
Inherited renal acidoses.
  Journal
Physiology (Bethesda) 22:202-11 (2007)
DOI:10.1152/physiol.00044.2006
Reference
  Authors
Pereira PC, Miranda DM, Oliveira EA, Silva AC
  Title
Molecular pathophysiology of renal tubular acidosis.
  Journal
Curr Genomics 10:51-9 (2009)
DOI:10.2174/138920209787581262
Reference
  Authors
Igarashi T, Sekine T, Inatomi J, Seki G
  Title
Unraveling the molecular pathogenesis of isolated proximal renal tubular acidosis.
  Journal
J Am Soc Nephrol 13:2171-7 (2002)
DOI:10.1097/01.ASN.0000025281.70901.30
Reference
  Authors
Alper SL
  Title
Genetic diseases of acid-base transporters.
  Journal
Annu Rev Physiol 64:899-923 (2002)
DOI:10.1146/annurev.physiol.64.092801.141759
Reference
  Authors
Unwin RJ, Capasso G
  Title
The renal tubular acidoses.
  Journal
J R Soc Med 94:221-5 (2001)
DOI:10.1177/014107680109400506
Reference
  Authors
Rodriguez-Soriano J
  Title
New insights into the pathogenesis of renal tubular acidosis--from functional to molecular studies.
  Journal
Pediatr Nephrol 14:1121-36 (2000)
DOI:10.1007/s004670000407
Reference
  Authors
Nowik M, Lecca MR, Velic A, Rehrauer H, Brandli AW, Wagner CA
  Title
Genome-wide gene expression profiling reveals renal genes regulated during metabolic acidosis.
  Journal
Physiol Genomics 32:322-34 (2008)
DOI:10.1152/physiolgenomics.00160.2007
Reference
  Authors
Curthoys NP
  Title
Role of mitochondrial glutaminase in rat renal glutamine metabolism.
  Journal
J Nutr 131:2491S-5S; discussion 2496S-7S (2001)
DOI:10.1093/jn/131.9.2491S
Related
pathway
map00010  Glycolysis / Gluconeogenesis
map00020  Citrate cycle (TCA cycle)
map04530  Tight junction
KO pathway
ko04964   

DBGET integrated database retrieval system