KEGG   PATHWAY: tpv00020
Entry
tpv00020                    Pathway                                
Name
Citrate cycle (TCA cycle) - Theileria parva
Description
The citrate cycle (TCA cycle, Krebs cycle) is an important aerobic pathway for the final steps of the oxidation of carbohydrates and fatty acids. The cycle starts with acetyl-CoA, the activated form of acetate, derived from glycolysis and pyruvate oxidation for carbohydrates and from beta oxidation of fatty acids. The two-carbon acetyl group in acetyl-CoA is transferred to the four-carbon compound of oxaloacetate to form the six-carbon compound of citrate. In a series of reactions two carbons in citrate are oxidized to CO2 and the reaction pathway supplies NADH for use in the oxidative phosphorylation and other metabolic processes. The pathway also supplies important precursor metabolites including 2-oxoglutarate. At the end of the cycle the remaining four-carbon part is transformed back to oxaloacetate. According to the genome sequence data, many organisms seem to lack genes for the full cycle [MD:M00009], but contain genes for specific segments [MD:M00010 M00011].
Class
Metabolism; Carbohydrate metabolism
Pathway map
tpv00020  Citrate cycle (TCA cycle)
tpv00020

Module
tpv_M00010  Citrate cycle, first carbon oxidation, oxaloacetate => 2-oxoglutarate [PATH:tpv00020]
Other DBs
GO: 0006099
Organism
Theileria parva [GN:tpv]
Gene
TP02_0666  citrate synthase [KO:K01647] [EC:2.3.3.1]
TP01_1050  aconitate hydratase [KO:K01681] [EC:4.2.1.3]
TP04_0620  isocitrate dehydrogenase (NADP+) [KO:K00031] [EC:1.1.1.42]
TP03_0124  2-oxoglutarate dehydrogenase e1 component [KO:K00164] [EC:1.2.4.2]
TP01_0262  dihydrolipoamide succinyltransferase [KO:K00658] [EC:2.3.1.61]
TP03_0227  dihydrolipoamide dehydrogenase [KO:K00382] [EC:1.8.1.4]
TP04_0660  succinyl-CoA synthetase subunit alpha [KO:K01899] [EC:6.2.1.4 6.2.1.5]
TP01_0677  ATP-specific succinyl-CoA synthetase beta subunit [KO:K01900] [EC:6.2.1.4 6.2.1.5]
TP03_0230  succinate dehydrogenase flavoprotein subunit [KO:K00234] [EC:1.3.5.1]
TP01_0210  succinate dehydrogenase iron-sulfur subunit [KO:K00235] [EC:1.3.5.1]
TP03_0078  fumarate hydratase [KO:K01676] [EC:4.2.1.2]
TP03_0758  malate:quinone oxidoreductase [KO:K00116] [EC:1.1.5.4]
TP01_0495  phosphoenolpyruvate carboxykinase [KO:K01610] [EC:4.1.1.49]
Compound
C00022  Pyruvate
C00024  Acetyl-CoA
C00026  2-Oxoglutarate
C00036  Oxaloacetate
C00042  Succinate
C00068  Thiamin diphosphate
C00074  Phosphoenolpyruvate
C00091  Succinyl-CoA
C00122  Fumarate
C00149  (S)-Malate
C00158  Citrate
C00311  Isocitrate
C00417  cis-Aconitate
C05125  2-(alpha-Hydroxyethyl)thiamine diphosphate
C05379  Oxalosuccinate
C05381  3-Carboxy-1-hydroxypropyl-ThPP
C15972  Enzyme N6-(lipoyl)lysine
C15973  Enzyme N6-(dihydrolipoyl)lysine
C16254  [Dihydrolipoyllysine-residue succinyltransferase] S-succinyldihydrolipoyllysine
C16255  [Dihydrolipoyllysine-residue acetyltransferase] S-acetyldihydrolipoyllysine
Reference
  Authors
Nishizuka Y (ed).
  Title
[Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1980)
Reference
  Authors
Nishizuka Y, Seyama Y, Ikai A, Ishimura Y, Kawaguchi A (eds).
  Title
[Cellular Functions and Metabolic Maps] (In Japanese)
  Journal
Tokyo Kagaku Dojin (1997)
Reference
  Authors
Michal G.
  Title
Biochemical Pathways
  Journal
Wiley (1999)
Related
pathway
tpv00010  Glycolysis / Gluconeogenesis
tpv00061  Fatty acid biosynthesis
tpv00190  Oxidative phosphorylation
tpv00220  Arginine biosynthesis
tpv00250  Alanine, aspartate and glutamate metabolism
tpv00280  Valine, leucine and isoleucine degradation
tpv00630  Glyoxylate and dicarboxylate metabolism
KO pathway
ko00020   

DBGET integrated database retrieval system