GenomeNet icon

KofamKOALA - KEGG Orthology Search

K number assignment based on KO-dependent scoring criteria

BlastKOALA GhostKOALA KofamKOALA

KOALA job status 2020/06/03 04:08:56 (GMT+9)
BlastGhostKofam
Number of jobs in the queue000
Submission of last completed job 2020/06/03 03:53:20  2020/06/03 03:47:20  2020/06/03 00:39:38 

KofamKOALA assigns K numbers to the user's sequence data by HMMER/HMMSEARCH against KOfam (a customized HMM database of KEGG Orthologs (KOs)). K number assignments with scores above the predefined thresholds for individual KOs are more reliable than other proposed assignments. Such high score assignments are highlighted with asterisks '*' in the output. The K number assignments facilitate the interpretation of the annotation results by linking the user's sequence data to the KEGG pathways and EC numbers.


Enter FASTA Sequences

or upload a sequence file

E-value
Hits with scores above the predefined adaptive thresholds and E-values
lower than or equal to the specified threshold will be reported with '*'.

E-mail



Current release
  • ver. 2020-05-10
    • KEGG release 94.0
Version history  
  • ver. 2020-04-02
    • KEGG release 94.0
  • ver. 2020-03-02
    • KEGG release 93.0
  • ver. 2020-02-02
    • KEGG release 93.0
  • ver. 2020-01-06
    • KEGG release 93.0
  • ver. 2019-10-02
    • KEGG release 92.0
  • ver. 2019-09-09
    • KEGG release 91.0
  • ver. 2019-08-10
    • KEGG release 91.0
  • ver. 2019-07-03
    • KEGG release 91.0
  • ver. 2019-05-10
    • KEGG release 90.1
  • ver. 2019-04-06
    • KEGG release 90.0
  • ver. 2019-03-20
    • KEGG release 89.1


Download
  • KOfam - HMM profiles for KEGG/KO with predefined score thresholds (download)
  • KofamScan - Software to search KOfam (download)
Reference
  • Aramaki T., Blanc-Mathieu R., Endo H., Ohkubo K., Kanehisa M., Goto S., Ogata H.
    KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold.
    Bioinformatics. 2019 Nov 19. pii: btz859. doi: 10.1093/bioinformatics/btz859.
Last updated: November 25, 2019
Feedback KEGG GenomeNet